4 resultados para SCHRODINGER-EQUATION
em University of Queensland eSpace - Australia
Resumo:
We consider the semilinear Schrodinger equation -Delta(A)u + V(x)u = Q(x)vertical bar u vertical bar(2* -2) u. Assuming that V changes sign, we establish the existence of a solution u not equal 0 in the Sobolev space H-A,V(1) + (R-N). The solution is obtained by a min-max type argument based on a topological linking. We also establish certain regularity properties of solutions for a rather general class of equations involving the operator -Delta(A).
Resumo:
We give a selective review of quantum mechanical methods for calculating and characterizing resonances in small molecular systems, with an emphasis on recent progress in Chebyshev and Lanczos iterative methods. Two archetypal molecular systems are discussed: isolated resonances in HCO, which exhibit regular mode and state specificity, and overlapping resonances in strongly bound HO2, which exhibit irregular and chaotic behavior. Recent progresses for non-zero total angular momentum J calculations of resonances including parallel computing models are also included and future directions in this field are discussed.
Resumo:
We present a technique to identify exact analytic expressions for the multiquantum eigenstates of a linear chain of coupled qubits. A choice of Hilbert subspaces is described that allows an exact solution of the stationary Schrodinger equation without imposing periodic boundary conditions and without neglecting end effects, fully including the dipole-dipole nearest-neighbor interaction between the atoms. The treatment is valid for an arbitrary coherent excitation in the atomic system, any number of atoms, any size of the chain relative to the resonant wavelength and arbitrary initial conditions of the atomic system. The procedure we develop is general enough to be adopted for the study of excitation in an arbitrary array of atoms including spin chains and one-dimensional Bose-Einstein condensates.