9 resultados para Rotational motion (Rigid dynamics)

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-linear motions of a gyrostat with an axisymmetrical, fluid-filled cavity are investigated. The cavity is considered to be completely filled with an ideal incompressible liquid performing uniform rotational motion. Helmholtz theorem, Euler's angular momentum theorem and Poisson equations are used to develop the disturbed Hamiltonian equations of the motions of the liquid-filled gyrostat subjected to small perturbing moments. The equations are established in terms of a set of canonical variables comprised of Euler angles and the conjugate angular momenta in order to facilitate the application of the Melnikov-Holmes-Marsden (MHM) method to investigate homoclinic/heteroclinic transversal intersections. In such a way, a criterion for the onset of chaotic oscillations is formulated for liquid-filled gyrostats with ellipsoidal and torus-shaped cavities and the results are confirmed via numerical simulations. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The multibody dynamics of a satellite in circular orbit, modeled as a central body with two hinge-connected deployable solar panel arrays, is investigated. Typically, the solar panel arrays are deployed in orbit using preloaded torsional springs at the hinges in a near symmetrical accordion manner, to minimize the shock loads at the hinges. There are five degrees of freedom of the interconnected rigid bodies, composed of coupled attitude motions (pitch, yaw and roll) of the central body plus relative rotations of the solar panel arrays. The dynamical equations of motion of the satellite system are derived using Kane's equations. These are then used to investigate the dynamic behavior of the system during solar panel deployment via the 7-8th-order Runge-Kutta integration algorithms and results are compared with approximate analytical solutions. Chaotic attitude motions of the completely deployed satellite in circular orbit under the influence of the gravity-gradient torques are subsequently investigated analytically using Melnikov's method and confirmed via numerical integration. The Hamiltonian equations in terms of Deprit's variables are used to facilitate the analysis. (C) 2003 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, 3-D Lattice Solid Model (LSMearth or LSM) was extended by introducing particle-scale rotation. In the new model, for each 3-D particle, we introduce six degrees of freedom: Three for translational motion, and three for orientation. Six kinds of relative motions are permitted between two neighboring particles, and six interactions are transferred, i.e., radial, two shearing forces, twisting and two bending torques. By using quaternion algebra, relative rotation between two particles is decomposed into two sequence-independent rotations such that all interactions due to the relative motions between interactive rigid bodies can be uniquely decided. After incorporating this mechanism and introducing bond breaking under torsion and bending into the LSM, several tests on 2-D and 3-D rock failure under uni-axial compression are carried out. Compared with the simulations without the single particle rotational mechanism, the new simulation results match more closely experimental results of rock fracture and hence, are encouraging. Since more parameters are introduced, an approach for choosing the new parameters is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold atoms in optical potentials provide an ideal test bed to explore quantum nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a dilute Bose-Einstein condensate and subjected to a far detuned optical standing wave that is modulated. They exhibit a wide range of dynamics, some of which can be explained by classical theory while other aspects show the underlying quantum nature of the system. The atoms have a mixed phase space containing regions of regular motion which appear as distinct peaks in the atomic momentum distribution embedded in a sea of chaos. The action of the atoms is of the order of Planck's constant, making quantum effects significant. This tutorial presents a detailed description of experiments measuring the evolution of atoms in time-dependent optical potentials. Experimental methods are developed providing means for the observation and selective loading of regions of regular motion. The dependence of the atomic dynamics on the system parameters is explored and distinct changes in the atomic momentum distribution are observed which are explained by the applicable quantum and classical theory. The observation of a bifurcation sequence is reported and explained using classical perturbation theory. Experimental methods for the accurate control of the momentum of an ensemble of atoms are developed. They use phase space resonances and chaotic transients providing novel ensemble atomic beamsplitters. The divergence between quantum and classical nonlinear dynamics is manifest in the experimental observation of dynamical tunnelling. It involves no potential barrier. However a constant of motion other than energy still forbids classically this quantum allowed motion. Atoms coherently tunnel back and forth between their initial state of oscillatory motion and the state 180 out of phase with the initial state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To examine the role of the effector dynamics of the wrist in the production of rhythmic motor activity, we estimated the phase shifts between the EMG and the task-related output for a rhythmic isometric torque production task and an oscillatory movement, and found a substantial difference (45-52degrees) between the two. For both tasks, the relation between EMG and task-related output (torque or displacement) was adequately reproduced with a physiologically motivated musculoskeletal model. The model simulations demonstrated the importance of the contribution of passive structures to the overall dynamics and provided an account for the observed phase shifts in the dynamic task. Additional simulations of the musculoskeletal model with added load suggested that particular changes in the phase relation between EMG and movement may follow largely from the intrinsic muscle dynamics, rather than being the result of adaptations in the neural control of joint stiffness. The implications of these results are discussed in relation to (models of) interlimb coordination in rhythmic tasks. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two physiological assessments, electromagnetic articulography (EMA) and electropalatography (EPG), were used simultaneously to investigate the articulatory dynamics in an 18-year-old male with dysarthria 9 years following traumatic brain injury (TBI). Eight words consisting of /t, s, integral, k/ in word initial and word final positions were produced up to 10 times. A nonneurologically impaired male served as a control subject. Six parameters were analyzed using EMA: velocity, acceleration, deceleration, distance, duration, and motion path of tongue movements. Using EPG, the pattern and amount of tongue-to-palate contact and the duration of the closure/constriction phase of each consonant produced were assessed. Timing disturbances in the TBI speaker's speech were highlighted in perceptual assessments in the form of prolonged phonemes and a reduced speech rate. EMA analysis revealed that the approach and release phase durations of the consonant productions were within normal limits. Kinematic strategies such as decreased velocity and decreased distances traveled by the tongue, however, may have counterbalanced each other to produce these appropriate results. EPG examination revealed significantly longer closure/constriction phase periods, which may have contributed to the prolonged phonemes and reduced speech rate observed. The implications of these findings for the development of treatment programs for dysarthria subsequent to TBI will be highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polypeptide backbones and side chains of proteins are constantly moving due to thermal motion and the kinetic energy of the atoms. The B-factors of protein crystal structures reflect the fluctuation of atoms about their average positions and provide important information about protein dynamics. Computational approaches to predict thermal motion are useful for analyzing the dynamic properties of proteins with unknown structures. In this article, we utilize a novel support vector regression (SVR) approach to predict the B-factor distribution (B-factor profile) of a protein from its sequence. We explore schemes for encoding sequences and various settings for the parameters used in SVR. Based on a large dataset of high-resolution proteins, our method predicts the B-factor distribution with a Pearson correlation coefficient (CC) of 0.53. In addition, our method predicts the B-factor profile with a CC of at least 0.56 for more than half of the proteins. Our method also performs well for classifying residues (rigid vs. flexible). For almost all predicted B-factor thresholds, prediction accuracies (percent of correctly predicted residues) are greater than 70%. These results exceed the best results of other sequence-based prediction methods. (C) 2005 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently Hupe and Rubin (2003, Vision Research 43 531 - 548) re-introduced the plaid as a form of perceptual rivalry by using two sets of drifting gratings behind a circular aperture to produce quasi-regular perceptual alternations between a coherent moving plaid of diamond-shaped intersections and the two sets of component 'sliding' gratings. We call this phenomenon plaid motion rivalry (PMR), and have compared its temporal dynamics with those of binocular rivalry in a sample of subjects covering a wide range of perceptual alternation rates. In support of the proposal that all rivalries may be mediated by a common switching mechanism, we found a high correlation between alternation rates induced by PMR and binocular rivalry. In keeping with a link discovered between the phase of rivalry and mood, we also found a link between PMR and an individual's mood state that is consistent with suggestions that each opposing phase of rivalry is associated with one or the other hemisphere, with the 'diamonds' phase of PMR linked with the 'positive' left hemisphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pyrin domain (PYD)-containing proteins are key components of pathways that regulate inflammation, apoptosis, and cytokine processing. Their importance is further evidenced by the consequences of mutations in these proteins that give rise to autoimmune and hyperinflammatory syndromes. PYDs, like other members of the death domain ( DD) superfamily, are postulated to mediate homotypic interactions that assemble and regulate the activity of signaling complexes. However, PYDs are presently the least well characterized of all four DD subfamilies. Here we report the three-dimensional structure and dynamic properties of ASC2, a PYD-only protein that functions as a modulator of multidomain PYD-containing proteins involved in NF-KB and caspase-1 activation. ASC2 adopts a six-helix bundle structure with a prominent loop, comprising 13 amino acid residues, between helices two and three. This loop represents a divergent feature of PYDs from other domains with the DD fold. Detailed analysis of backbone N-15 NMR relaxation data using both the Lipari-Szabo model-free and reduced spectral density function formalisms revealed no evidence of contiguous stretches of polypeptide chain with dramatically increased internal motion, except at the extreme N and C termini. Some mobility in the fast, picosecond to nanosecond timescale, was seen in helix 3 and the preceding alpha 2-alpha 3 loop, in stark contrast to the complete disorder seen in the corresponding region of the NALP1 PYD. Our results suggest that extensive conformational flexibility in helix 3 and the alpha 2-alpha 3 loop is not a general feature of pyrin domains. Further, a transition from complete disorder to order of the alpha 2-alpha 3 loop upon binding, as suggested for NALP1, is unlikely to be a common attribute of pyrin domain interactions.