25 resultados para Robot Manipulator
em University of Queensland eSpace - Australia
Resumo:
In most Of the practical six-actuator in-parallel manipulators, the octahedral form is either taken as it stands or is approximated. Yet considerable theoretical attention is paid in the literature to more general forms. Here we touch on the general form, and describe some aspects of its behavior that vitiate strongly against its adoption as a pattern for a realistic manipulate,: We reach the conclusion that the structure for in-parallel manipulators must be triangulated as fully as possible, so leading to the octahedral form. In describing some of the geometrical properties of the general octahedron, we show how they apply to manipulators. We examine in detail the special configurations at which the 6 x 6 matrix of leg lines is singular presenting results from the point of view of geometry in preference to analysis. In extending and enlarging on some known properties, a few behavioral surprises materialize. In studying special configurations, we start with the most general situation, and every other case derives from this. Our coverage is more comprehensive than any that we have found. We bring to light material that is, we think, of significant use to a designer.
Resumo:
A method is proposed for determining the optimal placement and controller design for multiple distributed actuators to reduce the vibrations of flexible structures. In particular, application of piezoceramic patches to a horizontally-slewing single-link flexible manipulator modeled using the assumed modes method is investigated. The optimization method uses simulated annealing and allows placement of any number of distributed actuators of unequal length, although piezoceramics of fixed equal lengths are used in the example. It also designs an linear-quadratic-regulator controller as part of the optimization procedure. The measures of performance used in the investigation to determine optimality are the total mass of the system and the time integral of the absolute value of the hub and tip position error. This study also varies the relative weightings for each of these performance measures to observe the effects on the controller designs and piezoceramic patch positions in the optimized solutions.
Resumo:
This paper describes the real time global vision system for the robot soccer team the RoboRoos. It has a highly optimised pipeline that includes thresholding, segmenting, colour normalising, object recognition and perspective and lens correction. It has a fast ‘paint’ colour calibration system that can calibrate in any face of the YUV or HSI cube. It also autonomously selects both an appropriate camera gain and colour gains robot regions across the field to achieve colour uniformity. Camera geometry calibration is performed automatically from selection of keypoints on the field. The system acheives a position accuracy of better than 15mm over a 4m × 5.5m field, and orientation accuracy to within 1°. It processes 614 × 480 pixels at 60Hz on a 2.0GHz Pentium 4 microprocessor.
Resumo:
The control and coordination of multiple mobile robots is a challenging task; particularly in environments with multiple, rapidly moving obstacles and agents. This paper describes a robust approach to multi-robot control, where robustness is gained from competency at every layer of robot control. The layers are: (i) a central coordination system (MAPS), (ii) an action system (AES), (iii) a navigation module, and (iv) a low level dynamic motion control system. The multi-robot coordination system assigns each robot a role and a sub-goal. Each robot’s action execution system then assumes the assigned role and attempts to achieve the specified sub-goal. The robot’s navigation system directs the robot to specific goal locations while ensuring that the robot avoids any obstacles. The motion system maps the heading and speed information from the navigation system to force-constrained motion. This multi-robot system has been extensively tested and applied in the robot soccer domain using both centralized and distributed coordination.
Resumo:
The GuRm is a 1.2m tall, 23 degree of freedom humanoid consuucted at the University of Queensland for research into humanoid robotics. The key challenge being addressed by the GuRw projcct is the development of appropriate learning strategies for control and coodinadon of the robot’s many joints. The development of learning strategies is Seen as a way to sidestep the inherent intricacy of modeling a multi-DOP biped robot. This paper outlines the approach taken to generate an appmpria*e control scheme for the joinis of the GuRoo. The paper demonsrrates the determination of local feedback control parameters using a genetic algorithm. The feedback loop is then augmented by a predictive modulator that learns a form of feed-fonward control to overcome the irregular loads experienced at each joint during the gait cycle. The predictive modulator is based on thc CMAC architecture. Results from tats on the GuRoo platform show that both systems provide improvements in stability and tracking of joint control.
Resumo:
This paper presents the implementation of a modified particle filter for vision-based simultaneous localization and mapping of an autonomous robot in a structured indoor environment. Through this method, artificial landmarks such as multi-coloured cylinders can be tracked with a camera mounted on the robot, and the position of the robot can be estimated at the same time. Experimental results in simulation and in real environments show that this approach has advantages over the extended Kalman filter with ambiguous data association and various levels of odometric noise.
Resumo:
The UQ RoboRoos have been developed to participate in the RoboCup robot soccer small size league over several years. RoboCup 2001 saw a focus on the mechanical design of the RoboRoos, with the introduction of an omni-directional drive system and a high power kicker. The change in mechanical design had implications for the rest of the system particularly navigation and multi-robot planning. In addition, the overhead vision system was upgraded to improve reliability and robustness.
Resumo:
To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in onedimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.