41 resultados para Riemann Sphere
em University of Queensland eSpace - Australia
Resumo:
An exact analytical solution is obtained for the transient dissolution of solid spheres in a diffusion-controlled environment. This result provides a useful reference point for drug testing in humans. The dimensionless solution is expressed in terms of a single parameter, which accounts for solubility, bulk flow, and stagnant fluid composition. A simple, explicit and exact expression was found to predict time-to-complete dissolution (TCD). An approximate solution was also found which tracks the exact case for low solubility conditions.
Resumo:
The validity of the concept of equivalent sphere introduced by Aris in 1957 to multicomponent reacting systems is investigated in this paper. A network of C6 hydrocarbon reforming reaction and a fixed bed reactor are taken as the model reaction network and the reactor configuration, respectively.
Resumo:
In a previous paper we introduced examples of Hamiltonian mappings with phase space structures resembling circle packings. It was shown that a vast number of periodic orbits can be found using special properties. We now use this information to explore the semiclassical quantization of one of these maps.
Resumo:
The outer-sphere redox behaviour of a series of [LnCoIII-NCFeII(CN)(5)](-) (L-n = n-membered pentadentate aza-macrocycle) complexes have been studied as a function of pH and oxidising agent. All the dinuclear complexes show a double protonation process at pH approximate to 2 that produces a shift in their UV/Vis spectra. Oxidation of the different non-protonated and diprotonated complexes has been carried out with peroxodisulfate, and of the non-protonated complexes also with trisoxalatocobaltate(III). The results are in agreement with predictions from the Marcus theory. The oxidation of [Fe(phen)(3)](3+) and [IrCl6](2-) is too fast to be measured, although for the latter the transient observation of the process has been achieved at pH = 0. The study of the kinetics of the outer-sphere redox process, with the S2O82- and [Co(ox)(3)](3-) oxidants, has been carried out as a function of pH, temperature, and pressure. As a whole, the values found for the activation volumes, entropies, and enthalpies are in the following margins, for the diprotonated and non-protonated dinuclear complexes, respectively: DeltaV(not equal) from 11 to 13 and 15 to 20 cm(3) mol(-1); DeltaS(not equal) from 110 to 30 and -60 to -90 J K-1 mol(-1); DeltaH(not equal) from 115 to 80 and 50 to 65 kJ.mol(-1). The thermal activation parameters are clearly dominated by the electrostriction occurring on outer-sphere precursor formation, while the trends found for the values of the volume of activation indicate an important degree of tuning due to the charge distribution during the electron transfer process. The special arrangement on the amine ligands in the isomer trans[(L14CoNCFeII)-N-III(CN)(5)](-) accounts for important differences in solvent-assisted hydrogen bonding occurring within the outer-sphere redox process, as has been established in redox reactions of similar compounds. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Resumo:
In the English literature, facial approximation methods have been commonly classified into three types: Russian, American, or Combination. These categorizations are based on the protocols used, for example, whether methods use average soft-tissue depths (American methods) or require face muscle construction (Russian methods). However, literature searches outside the usual realm of English publications reveal key papers that demonstrate that the Russian category above has been founded on distorted views. In reality, Russian methods are based on limited face muscle construction, with heavy reliance on modified average soft-tissue depths. A closer inspection of the American method also reveals inconsistencies with the recognized classification scheme. This investigation thus demonstrates that all major methods of facial approximation depend on both face anatomy and average soft-tissue depths, rendering common method classification schemes redundant. The best way forward appears to be for practitioners to describe the methods they use (including the weight each one gives to average soft-tissue depths and deep face tissue construction) without placing them in any categorical classificatory group or giving them an ambiguous name. The state of this situation may need to be reviewed in the future in light of new research results and paradigms.
Resumo:
One of the normative tenets of the Habermasian public sphere is that it should be an open and universally accessible forum. In Australia, one way of achieving this is the provision for community broadcasting in the Broadcasting Services Act. A closer examination of community broadcasting, however, suggests practices that contradict the idea of an open and accessible public sphere. Community broadcasting organizations regulate access to their media assets through a combination of formal and informal structures. This suggests that the public sphere can be understood as a resource, and that community broadcasting organizations can be analysed as ‘commons regimes’. This approach reveals a fundamental paradox inherent in the public sphere: access, participation and the quality of discourse in the public sphere are connected to its enclosure, which limits membership and participation through a system of rules and norms that govern the conduct of a group. By accepting the view that a public sphere is governed by property rights, it follows that an open and universally accessible public sphere is neither possible nor desirable.
Resumo:
The changing ways of clothing in Australia, which has communicated disaffection within the public sphere, is enquired. The relationship between clothes as protested in everyday public life, and those exceptional, socially disruptive clothes on view at specific protest gatherings, are also explored. It is shown that dissident dress in the 1980s demonstrated a greater degree of solidarity in its radical difference from mainstream dress of 2000s. It is suggested that building on reconceptualised notion of protest dressing as process not fixity, the relationship of dissident dress to the mainstream has become, for the most part, less dichotomous.
Resumo:
Discrete element method (DEM) modeling is used in parallel with a model for coalescence of deformable surface wet granules. This produces a method capable of predicting both collision rates and coalescence efficiencies for use in derivation of an overall coalescence kernel. These coalescence kernels can then be used in computationally efficient meso-scale models such as population balance equation (PBE) models. A soft-sphere DEM model using periodic boundary conditions and a unique boxing scheme was utilized to simulate particle flow inside a high-shear mixer. Analysis of the simulation results provided collision frequency, aggregation frequency, kinetic energy, coalescence efficiency and compaction rates for the granulation process. This information can be used to bridge the gap in multi-scale modeling of granulation processes between the micro-scale DEM/coalescence modeling approach and a meso-scale PBE modeling approach.
Resumo:
This paper describes U2DE, a finite-volume code that numerically solves the Euler equations. The code was used to perform multi-dimensional simulations of the gradual opening of a primary diaphragm in a shock tube. From the simulations, the speed of the developing shock wave was recorded and compared with other estimates. The ability of U2DE to compute shock speed was confirmed by comparing numerical results with the analytic solution for an ideal shock tube. For high initial pressure ratios across the diaphragm, previous experiments have shown that the measured shock speed can exceed the shock speed predicted by one-dimensional models. The shock speeds computed with the present multi-dimensional simulation were higher than those estimated by previous one-dimensional models and, thus, were closer to the experimental measurements. This indicates that multi-dimensional flow effects were partly responsible for the relatively high shock speeds measured in the experiments.