55 resultados para Retina-Enfermedades
em University of Queensland eSpace - Australia
Resumo:
Three different aspects of the morphological organisation of deep-sea fish retinae are reviewed: First, questions of general cell biological relevance are addressed with respect to the development and proliferation patterns of photoreceptors, and problems associated with the growth of multibank retinae, and with outer segment renewal are discussed in situations where there is no direct contact between the retinal pigment epithelium and the tips of rod outer segments. The second part deals with the neural portion of the deep-sea fish retina. Cell densities are greatly reduced, yet neurohistochemistry demonstrates that all major neurotransmitters and neuropeptides found in other vertebrate retinae are also present in deep-sea fish. Quantitatively, convergence rates in unspecialised parts of the retina are similar to those in nocturnal mammals. The differentiation of horizontal cells makes it unlikely that species with more than a single visual pigment are capable of colour vision. In the third part. the diversity of deep-sea fish retinae is highlighted. Based on the topography of ganglion cells, species are identified with areae or foveae located in various parts of the retina, giving them a greatly improved spatial resolving power in specific parts of their visual fields. The highest degree of specialisation is found in tubular eyes. This is demonstrated in a case study of the scopelarchid retina, where as many as seven regions with different degrees of differentiation can be distinguished, ranging from an area giganto cellularis, regions with grouped rods to retinal diverticulum. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
This review provides an overview of the distributions, properties and roles of amino acid transport systems in normal and pathological retinal tissues and discusses the roles of specific identified transporters in the mammalian retina. The retina is used in this context as a vehicle for describing neuronal and glial properties. which are in semi, but not all cases comparable to those found elsewhere an the brain. Where significant departures are noted, these are discussed in the context of functional specialisations of the retina and its relationship to adjacent supporting tissues such as the retinal pigment epithelium. Specific examples are given where immunocytochemical labelling for amino acid transporters may yield inaccurate results, possibly because of activity-dependent conformation changes of epitopes in these proteins which render the epitopes more or less accessible to antibodies. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Objectives: To reevaluate the longevity and intraocular safety of recombinant adenovirus (rAd)-mediated gene delivery after subretinal injection, and to prolong transgene expression through the combination of 2 synergistic immunosuppressants. Methods: An rAd vector carrying green fluorescent protein (GFP) gene was delivered subretinally in the rat eye. The GFP expression was monitored in real time by fundus fluorescent photography. Intraocular safety was examined by observation of changes of retinal pigmentation, cell infiltration in virus-contacted area, immunophenotyping for CD4(+) and CD8(+) cytotoxic T lymphocytes, and CD68(+) macrophages, histologic findings, and dark-adapted electroretinography. Two synergistic immunosuppressants, cyclosporine and sirolimus, were used alone or in combination to prolong transgene expression by temporary immunosuppression. Results: The GFP expression peaked on day 4, dramatically decreased on day 10, and was not detectable on day 14. The decreased GFP expression was coincident with cell infiltration in virus-contacted area. Immunostaining showed that the infiltrating cells were CD4(+) and CD8(+) cytotoxic T lymphocytes and CD68(+) macrophages. Clumped retinal pigmentation and decreased b wave of dark-adapted electroretinogram were observed at 3 to 4 weeks after injection. Histologic examination confirmed rAd-induced retinal degeneration. Transient immunosuppression by cyclosporine and sirolimus, either alone or in combination, improved transgene expression, with the combination being the most efficient. The combined immunosuppression attenuated but did not retard the rAd-induced retinal damage. Conclusions: Transgene expression mediated by rAd after subretinal delivery is short-term and toxic to the retina. Combination of cyclosporine and sirolimus may act as an immunosuppressive adjunct to prolong rAd-mediated gene transfer. Clinical Relevance: The intraocular safety of rAd should be carefully considered before clinical trials are performed.
Resumo:
The nervous system contains an abundance of taurine, a neuroactive sulfonic acid. Antibodies were generated against two cloned high-affinity taurine transporters, referred to in this study as TAUT-1 and TAUT-2. The distribution of such was compared with the distribution of taurine in the rat brain, pituitary, and retina. The cellular pattern of [H-3] taurine uptake in brain slices, pituitary slices, and retinas was examined by autoradiography. TAUT-2 was predominantly associated with glial cells, including the Bergmann glial cells of the cerebellum and astrocytes in brain areas such as hippocampus. Low-level labeling for TAUT-2 was also observed in some neurones such as CA1 pyramidal cells. TAUT-1 distribution was more limited; in the posterior pituitary TAUT-1 was associated with the pituicytes but was absent from glial cells in the intermediate and anterior lobes. Conversely, in the brain TAUT-1 was associated with cerebellar Purkinje cells and, in the retina, with photoreceptors and bipolar cells. Our data suggest that intracellular taurine levels in glial cells and neurons may be regulated in part by specific high-affinity taurine transporters. The heterogeneous distribution of taurine and its transporters in the brain does not reconcile well with the possibility that taurine acts solely as a ubiquitous osmolyte in nervous tissues. (C) 2002 Wiley-Liss, Inc.
Resumo:
Aquaporin 1 (AQP1; also known as CHIP, a channel-forming integral membrane protein of 28 kDa) is the first protein to be shown to function as a water channel and has been recently shown to be present in the rat retina. We previously showed (Kim et al. [1998] Neurosci Lett 244:52-54) that AQP1-like immunoreactivity is present in a certain population of amacrine cells in the rat retina. This study was conducted to characterize these cells in more detail, With immunocytochemistry using specific antisera against AQP1, whole-mount preparations and 50-mum-thick vibratome sections were examined by light and electron microscopy. These cells were a class of amacrine cells, which had symmetric bistratified dendritic trees ramified in stratum 2 and in the border of strata 3 and 4 of the inner plexiform layer (IPL). Their dendritic field diameters ranged from 90 to 230 mum. Double labeling with antisera against AQP1 and gamma-aminobutyric acid or glycine demonstrated that these AQP1-like-immunoreactive amacrine cells were immunoreactive for glycine. Their most frequent synaptic input was from other amacrine cell processes in both sublaminae a and b of the IPL, followed by a few cone bipolar cells. Their primary targets were other amacrine cells and ganglion cells in both sublaminae a and b of the IPL. In addition, synaptic output Onto bipolar cells was rarely observed in sublamina b of the IPL. Thus, the AQP1 antibody labels a class of glycinergic amacrine cells with small to medium-sized dendritic fields in the rat retina. (C) 2002 Wiley-Liss, Inc.
Resumo:
The distributions of a carboxyl terminal splice variant of the glutamate transporter GLT-1, referred to as GLT-1B, and the carboxyl terminus of the originally described variant of GLT-1, referred to hereafter as GLT-1alpha, were examined using specific antisera. GLT-1B was present in the retina at very early developmental stages. Labelling was demonstrable at embryonic day 14, and strong labelling was evident by embryonic day 18. Such labelling was initially restricted to populations of cone photoreceptors, the processes of which extended through the entire thickness of the retina and appeared to make contact with the retinal ganglion cells. During postnatal development the GLT-1B-positive photoreceptor processes retracted to form the outer plexiform layer, and around postnatal day 7, GLT-1B-immunoreactive bipolar cells appeared. The pattern of labelling of bipolar cell processes within the inner plexiform layer changed during postnatal development. Two strata of strongly immunoreactive terminals were initially evident in the inner plexiform layer, but by adulthood these two bands were no longer evident and labelling was restricted to the somata and processes (but not synaptic terminals) of the bipolar cells, as well as the somata, processes, and terminals of cone photoreceptors. By contrast, GLT-1alpha appeared late in postnatal development and was restricted mainly to a population of amacrine cells, although transient labelling was also associated with punctate elements in the outer plexiform layer, which may represent photoreceptor terminals, (C) 2002 Wiley-Liss, Inc.
Resumo:
The neuronal circuitry underlying the generation of direction selectivity in the retina has remained elusive for almost 40 years. Recent studies indicate that direction selectivity may be established within the radial dendrites of 'starburst' amacrine cells and that retinal ganglion cells may acquire their direction selectivity by the appropriate weighting of excitatory and inhibitory inputs from starburst dendrites pointing in different directions. If so, this would require unexpected complexity and subtlety in the synaptic connectivity of these CNS neurons.
Resumo:
The synaptic conductance of the On-Off direction-selective ganglion cells was measured during visual stimulation to determine whether the direction selectivity is a property of the circuitry presynaptic to the ganglion cells or is generated by postsynaptic interaction of excitatory and inhibitory inputs. Three synaptic asymmetries were identified that contribute to the generation of direction-selective responses: (1) a presynaptic mechanism producing stronger excitation in the preferred direction, (2) a presynaptic mechanism producing stronger inhibition in the opposite direction, and (3) postsynaptic interaction of excitation with spatially offset inhibition. Although the on- and off-responses showed the same directional tuning, the off-response was generated by all three mechanisms, whereas the on- response was generated primarily by the two presynaptic mechanisms. The results indicate that, within a single neuron, different strategies are used within distinct dendritic arbors to accomplish the same neural computation.
Resumo:
The light-evoked release of acetylcholine (ACh) affects the responses of many retinal ganglion cells, in part via nicotinic acetylcholine receptors (nAChRs). nAChRs that contain beta2alpha3 neuronal nicotinic acetylcholine receptors have been identified and localized in the rabbit retina; these nAChRs are recognized by the monoclonal antibody mAb210. We have examined the expression of beta2alpha3 nAChRs by glycinergic amacrine cells in the rabbit retina and have identified different subpopulations of nicotinic cholinoceptive glycinergic cells using double and triple immunohistochemistry with quantitative analysis. Here we demonstrate that about 70% of the cholinoceptive amacrine cells in rabbit retina are glycinergic cells. At least three nonoverlapping subpopulations of mAb210 glycine-immunoreactive cells can be distinguished with antibodies against calretinin, calbindin, and gamma-aminobutyric acid (GABA)(A) receptors. The cholinergic cells in rabbit retina are thought to synapse only on other cholinergic cells and ganglion cells. Thus, the expression of beta2alpha3 nAChRs on diverse populations of glycinergic cells is puzzling. To explore this finding, the subcellular localization of beta2alpha3 was studied at the electron microscopic level. mAb210 immunoreactivity was localized on the dendrites of amacrines and ganglion cells throughout the inner plexiform layer, and much of the labeling was not associated with recognizable synapses. Thus, our findings indicate that ACh in the mammalian retina may modulate glycinergic circuits via extrasynaptic beta2alpha3 nAChRs. (C) 2002 Wiley-Liss, Inc.
Resumo:
The On-Off direction-selective ganglion cells (DSGCs) in the rabbit retina comprise four distinct subtypes that respond preferentially to image motion in four orthogonal directions; each subtype forms a regular territorial array, which is overlapped by the other three arrays. In this study, ganglion cells in the developing retina were injected with Neurobiotin, a gap-junction-permeable tracer, and the DSGCs were identified by their characteristic type 1 bistratified (BiS1) morphology. The complex patterns of tracer coupling shown by the BiSl ganglion cells changed systematically during the course of postnatal development. BiSl cells appear to be coupled together around the time of birth, but, over the next 10 days, BiSl cells decouple from each other, leading to the mature pattern in which only one subtype is coupled. At about postnatal day 5, before the ganglion cells become visually responsive, each of the BiSl cells commonly showed tracer coupling both to a regular array of neighboring BiSl cells, presumably destined to be DSGCs of the same subtype, and to a regular array of overlapping BiSl cells, presumably destined to be DSGCs of a different subtype. The gap-junction intercellular communication between subtypes of DSGCs with different preferred directions may play an important role in the differentiation of their synaptic connectivity, with respect to either the inputs that DSGCs receive from retinal interneurons or the outputs that DSGCs make to geniculate neurons. (C) 2004 Wiley-Liss, Inc.
Type 1 nitrergic (ND1) cells of the rabbit retina: Comparison with other axon-bearing amacrine cells
Resumo:
NADPH diaphorase (NADPHd) histochemistry labels two types of nitrergic amacrine cells in the rabbit retina. Both the large ND1 cells and the small ND2 cells stratify in the middle of the inner plexiform layer, and their overlapping processes produce a dense plexus, which makes it difficult to trace the morphology of single cells. The complete morphology of the ND1 amacrine cells has been revealed by injecting Neurobiotin into large round somata in the inner nuclear layer, which resulted in the labelling of amacrine cells whose proximal morphology and stratification matched those of the ND1 cells stained by NADPHd histochemistry. The Neurobiotin-injected ND1 cells showed strong homologous tracer coupling to surrounding ND1 cells, and double-labelling experiments confirmed that these coupled cells showed NADPHd reactivity. The ND1 amacrine cells branch in stratum 3 of the inner plexiform layer, where they produce a sparsely branched dendritic tree of 400-600 mum diameter in ventral peripheral retina. In addition, each cell gives rise to several fine beaded processes, which arise either from a side branch of the dendritic tree or from the tapering of a distal dendrite. These axon-like processes branch successively within the vicinity of the dendritic field before extending, with little or no further branching, for 3-5 mm from the soma in ventral peripheral retina. Consequently, these cells may span one-third of the visual field of each eye, and their spatial extent appears to be greater than that of most other types of axon-bearing amacrine cells injected with Neurobiotin in this study. The morphology and tracer-coupling pattern of the ND1 cells are compared with those of confirmed type 1 catecholaminergic cells, a presumptive type 2 catecholaminergic cell, the type 1 polyaxonal. cells, the long-range amacrine cells, a novel type of axon-bearing cell that also branches in stratum 3, and a type of displaced amacrine cell that may correspond to the type 2 polyaxonal cell. (C) 2004 Wiley-Liss, Inc.
Resumo:
The type 1 polyaxonal (PA1) cell is a distinct type of axon-bearing amacrine cell whose soma commonly occupies an interstitial position in the inner plexiform layer; the proximal branches of the sparse dendritic tree produce 1-4 axon-like processes, which form an extensive axonal arbor that is concentric with the smaller dendritic tree (Dacey, 1989; Famiglietti, 1992a,b). In this study, intracellular injections of Neurobiotin have revealed the complete dendritic and axonal morphology of the PA1 cells in the rabbit retina, as well as labeling the local array of PA1 cells through homologous tracer coupling. The dendritic-field area of the PA1 cells increased from a minimum of 0.15 mm(2) (0.44-mm equivalent diameter) on the visual streak to a maximum of 0.67 mm(2) (0.92-mm diameter) in the far periphery; the axonal-field area also showed a 3-fold variation across the retina, ranging from 3.1 mm(2) (2.0-mm diameter) to 10.2 mm(2) (3.6-mm diameter). The increase in dendritic- and axonal-field size was accompanied by a reduction in cell density, from 60 cells/mm(2) in the visual streak to 20 cells/mm(2) in the far periphery, so that the PA1 cells showed a 12 times overlap of their dendritic fields across the retina and a 200-300 times overlap of their axonal fields. Consequently, the axonal plexus was much denser than the dendritic plexus, with each square millimeter of retina containing similar to100 mm of dendrites and similar to1000 mm of axonal processes. The strong homologous tracer coupling revealed that similar to45% of the PA1 somata were located in the inner nuclear layer, similar to50% in the inner plexiform layer, and similar to5% in the ganglion cell layer. In addition, the Neurobiotin-injected PA1 cells sometimes showed clear heterologous tracer coupling to a regular array of small ganglion cells, which were present at half the density of the PA1 cells. The PA1 cells were also shown to contain elevated levels of gamma-aminobutyric acid (GABA), like other axon-bearing amacrine cells.
Resumo:
Visual acuity is limited by the size and density of the smallest retinal ganglion cells, which correspond to the midget ganglion cells in primate retina and the beta- ganglion cells in cat retina, both of which have concentric receptive fields that respond at either light- On or light- Off. In contrast, the smallest ganglion cells in the rabbit retina are the local edge detectors ( LEDs), which respond to spot illumination at both light- On and light- Off. However, the LEDs do not predominate in the rabbit retina and the question arises, what role do they play in fine spatial vision? We studied the morphology and physiology of LEDs in the isolated rabbit retina and examined how their response properties are shaped by the excitatory and inhibitory inputs. Although the LEDs comprise only similar to 15% of the ganglion cells, neighboring LEDs are separated by 30 - 40 mu m on the visual streak, which is sufficient to account for the grating acuity of the rabbit. The spatial and temporal receptive- field properties of LEDs are generated by distinct inhibitory mechanisms. The strong inhibitory surround acts presynaptically to suppress both the excitation and the inhibition elicited by center stimulation. The temporal properties, characterized by sluggish onset, sustained firing, and low bandwidth, are mediated by the temporal properties of the bipolar cells and by postsynaptic interactions between the excitatory and inhibitory inputs. We propose that the LEDs signal fine spatial detail during visual fixation, when high temporal frequencies are minimal.
Resumo:
The cholinergic amacrine cells in the rabbit retina slowly accumulate glycine to very high levels when the tissue is incubated with excess sarcosine (methylglycine), even though these cells do not normally contain elevated levels of glycine and do not express high-affinity glycine transporters. Because the sarcosine also depletes the endogenous glycine in the glycine-containing amacrine cells and bipolar cells, the cholinergic amacrine cells can be selectively labeled by glycine immunocytochemistry under these conditions. Incubation experiments indicated that the effect of sarcosine on the cholinergic amacrine cells is indirect: sarcosine raises the extracellular concentration of glycine by blocking its re-uptake by the glycinergic amacrine cells, and the excess glycine is probably taken-up by an unidentified low-affinity transporter on the cholinergic amacrine cells. Neurobiotin injection of the On-Off direction-selective (DS) ganglion cells in sarcosine-incubated rabbit retina was combined with glycine immunocytochemistry to examine the dendritic relationships between the DS ganglion cells and the cholinergic amacrine cells. These double-labeled preparations showed that the dendrites of the DS ganglion cells closely follow the fasciculated dendrites of the cholinergic amacrine cells. Each ganglion cell dendrite located within the cholinergic strata is associated with a cholinergic fascicle and, conversely, there are few cholinergic fascicles that do not contain at least one dendrite from an On-Off DS cell. It is not known how the dendritic co-fasciculation develops, but the cholinergic dendritic plexus may provide the initial scaffold, because the dendrites of the On-Off DS cells commonly run along the outside of the cholinergic fascicles. J. Comp. Neurol. 421:1-13, 2000. (C) 2000 Wiley-Liss, Inc.