5 resultados para Refractive errors - Epidemiology
em University of Queensland eSpace - Australia
Resumo:
This study aimed to determine the accuracy (and usability) of the Retinomax, a hand-held autorefractor, compared to measurements taken from hand-held retinoscopy (HHR) in a sample of normal 1-year-old children. The study was a method comparison set at four Community Child Health Clinics. Infants (n = 2079) of approximately 1 year of age were identified from birth/immunization records and their caregivers were contacted by mail. A total of 327 infants ranging in age from 46 weeks to 81 weeks (mean 61 weeks) participated in the study. The children underwent a full ophthalmic examination. Under cycloplegia, refraction was measured in each eye by streak retinoscopy (HHR) and then re-measured using the Retinomax autorefractor. Sphere, cylinder, axis of cylinder and spherical equivalent measurements were recorded for HHR and Retinomax instruments, and compared. Across the range of refractive errors measured, there was generally close agreement between the two examination methods, although the Retinomax consistently read around 0.3 D less hyperopic than HHR. Significantly more girls (72 infants, 47.7%), struggled during examination with the Retinomax than boys (52 infants, 29.5%) (P < 0.001). Agreement deteriorated between the two instruments if the patient struggled during the examination (P < 0.001). In general, the Retinomax would appear to be a useful screening instrument in early childhood. However, patient cooperation affects the accuracy of results and is an important con-sideration in determining whether this screening instrument should be adopted for measuring refractive errors in early infancy.
Resumo:
Myopia (short-sightedness) is a visual problem associated with excessive eye growth and vitreous chamber expansion. Within the eye serotonin (5-hydroxytryptamine, 5-HT) appears to have a variety of effects, it alters retinal amacrine cell processing, increases intraocular pressure, constricts ocular blood vessels, and is also mitogenic. This study sought to determine the role of the retinal serotonin system in eye growth regulation. Myopia was produced in 7-day-old chicks using -15 D spectacle lenses (LIM) and form deprivation (FDM). The effect on LIM and FDM of daily intravitreal injections of a combination of 5-HT receptor antagonists (1, 10, 50 mu M), 5-HT2 selective antagonist (Mianserin 0.5, 20 mu M) were assessed. Counts were performed of serotonin and tyrosine hydroxylase positive neurons and the relative density used to account for areal changes due to eye growth. The effect of LIM and lens-induced hyperopia (LIH) on the numbers of 5-HT-containing amacrine cells in the retina were then determined. The combination of the 5-HT receptor antagonists inhibited LIM by approximately half (1 mu M RE: -7.12 +/- 1.0 D, AL: 0.38 +/- 0.06 mm vs. saline RE: -13.19 +/- 0.65 D, AL: 0.64 +/- 0.03 mm. RE: p < 0.01, AL: p < 0.01), whereas FDM was not affected (1 mu M RE: -8.88 +/- 1.10 D). These data suggest that serotonin has a stimulatory role in LIM, although high doses of serotonin were inhibitory (1 mu M RE: -9.30 +/- 1.34 D). 5-HT immunoreactivity was localised to a subset of amacrine cell bodies in the inner nuclear layer of the retina, and to two synaptic strata in the inner plexiform layer. LIM eyes had increased numbers of 5-HT-containing amacrine cells in the central retina (12.5%). Collectively, these results suggest that manipulations to the serotonin system can alter the eye growth process but the role of the transmitter system within this process remains unclear. (c) 2005 Elsevier Ltd. All rights reserved.