12 resultados para Recruitment and selection process
em University of Queensland eSpace - Australia
Resumo:
The study aimed to examine the factors influencing referral to rehabilitation following traumatic brain injury (TBI) by using social problems theory as a conceptual model to focus on practitioners and the process of decision-making in two Australian hospitals. The research design involved semi-structured interviews with 18 practitioners and observations of 10 team meetings, and was part of a larger study on factors influencing referral to rehabilitation in the same settings. Analysis revealed that referral decisions were influenced primarily by practitioners' selection and their interpretation of clinical and non-clinical patient factors. Further, practitioners generally considered patient factors concurrently during an ongoing process of decision-making, with the combinations and interactions of these factors forming the basis for interpretations of problems and referral justifications. Key patient factors considered in referral decisions included functional and tracheostomy status, time since injury, age, family, place of residence and Indigenous status. However, rate and extent of progress, recovery potential, safety and burden of care, potential for independence and capacity to cope were five interpretative themes, which emerged as the justifications for referral decisions. The subsequent negotiation of referral based on patient factors was in turn shaped by the involvement of practitioners. While multi-disciplinary processes of decision-making were the norm, allied health professionals occupied a central role in referral to rehabilitation, and involvement of medical, nursing and allied health practitioners varied. Finally, the organizational pressures and resource constraints, combined with practitioners' assimilation of the broader efficiency agenda were central factors shaping referral. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Traditional methods of R&D management are no longer sufficient for embracing innovations and leveraging complex new technologies to fully integrated positions in established systems. This paper presents the view that the technology integration process is a result of fundamental interactions embedded in inter-organisational activities. Emerging industries, high technology companies and knowledge intensive organisations owe a large part of their viability to complex networks of inter-organisational interactions and relationships. R&D organisations are the gatekeepers in the technology integration process with their initial sanction and motivation to develop technologies providing the first point of entry. Networks rely on the activities of stakeholders to provide the foundations of collaborative R&D activities, business-to-business marketing and strategic alliances. Such complex inter-organisational interactions and relationships influence value creation and organisational goals as stakeholders seek to gain investment opportunities. A theoretical model is developed here that contributes to our understanding of technology integration (adoption) as a dynamic process, which is simultaneously structured and enacted through the activities of stakeholders and organisations in complex inter-organisational networks of sanction and integration.
Resumo:
The birth, death and catastrophe process is an extension of the birth-death process that incorporates the possibility of reductions in population of arbitrary size. We will consider a general form of this model in which the transition rates are allowed to depend on the current population size in an arbitrary manner. The linear case, where the transition rates are proportional to current population size, has been studied extensively. In particular, extinction probabilities, the expected time to extinction, and the distribution of the population size conditional on nonextinction (the quasi-stationary distribution) have all been evaluated explicitly. However, whilst these characteristics are of interest in the modelling and management of populations, processes with linear rate coefficients represent only a very limited class of models. We address this limitation by allowing for a wider range of catastrophic events. Despite this generalisation, explicit expressions can still be found for the expected extinction times.
Resumo:
Background: Approximately 40% of mammalian mRNA sequences contain AUG trinucleotides upstream of the main coding sequence, with a quarter of these AUGs demarcating open reading frames of 20 or more codons. In order to investigate whether these open reading frames may encode functional peptides, we have carried out a comparative genomic analysis of human and mouse mRNA 'untranslated regions' using sequences from the RefSeq mRNA sequence database. Results: We have identified over 200 upstream open reading frames which are strongly conserved between the human and mouse genomes. Consensus sequences associated with efficient initiation of translation are overrepresented at the AUG trinucleotides of these upstream open reading frames, while comparative analysis of their DNA and putative peptide sequences shows evidence of purifying selection. Conclusion: The occurrence of a large number of conserved upstream open reading frames, in association with features consistent with protein translation, strongly suggests evolutionary maintenance of the coding sequence and indicates probable functional expression of the peptides encoded within these upstream open reading frames.
Colour removal from industrial wastewater by using the combination of UV/H2O2 and Biological Process
Resumo:
Understanding and predicting the distribution of organisms in heterogeneous environments lies at the heart of ecology, and the theory of density-dependent habitat selection (DDHS) provides ecologists with an inferential framework linking evolution and population dynamics. Current theory does not allow for temporal variation in habitat quality, a serious limitation when confronted with real ecological systems. We develop both a stochastic equivalent of the ideal free distribution to study how spatial patterns of habitat use depend on the magnitude and spatial correlation of environmental stochasticity and also a stochastic habitat selection rule. The emerging patterns are confronted with deterministic predictions based on isodar analysis, an established empirical approach to the analysis of habitat selection patterns. Our simulations highlight some consistent patterns of habitat use, indicating that it is possible to make inferences about the habitat selection process based on observed patterns of habitat use. However, isodar analysis gives results that are contingent on the magnitude and spatial correlation of environmental stochasticity. Hence, DDHS is better revealed by a measure of habitat selectivity than by empirical isodars. The detection of DDHS is but a small component of isodar theory, which remains an important conceptual framework for linking evolutionary strategies in behavior and population dynamics.
Resumo:
To ensure signalling fidelity, kinases must act only on a defined subset of cellular targets. Appreciating the basis for this substrate specificity is essential for understanding the role of an individual protein kinase in a particular cellular process. The specificity in the cell is determined by a combination of peptide specificity of the kinase (the molecular recognition of the sequence surrounding the phosphorylation site), substrate recruitment and phosphatase activity. Peptide specificity plays a crucial role and depends on the complementarity between the kinase and the substrate and therefore on their three-dimensional structures. Methods for experimental identification of kinase substrates and characterization of specificity are expensive and laborious, therefore, computational approaches are being developed to reduce the amount of experimental work required in substrate identification. We discuss the structural basis of substrate specificity of protein kinases and review the experimental and computational methods used to obtain specificity information. (c) 2005 Elsevier B.V. All rights reserved.