19 resultados para RESTORES ENDOTHELIAL FUNCTION
em University of Queensland eSpace - Australia
Resumo:
Background: Relationships between low-density lipoprotein cholesterol and endothelial function in hemodialysis patients have yet to be investigated. Furthermore, current reporting of endothelial function data using flow-mediated dilatation has recognised limitations. The aims of the study were to determine the relationship between low-density lipoproteins and endothelial function in hemodialysis patients and to investigate the validity of determining the area under the curve for data collected during the flow-mediated dilatation technique. Methods: Brachial artery responses to reactive hyperemia (endothelial-dependent) and glyceryl trinitrate (endothelial-independent) were assessed in 19 hemodialysis patients using high-resolution ultrasound. Lipid profiles and other factors known to effect brachial artery reactivity were also measured prior to the flow-mediated dilatation technique. Results: There were no significant relationships between serum low-density lipoproteins and endothelial-dependent or -independent vasodilation using absolute change (mm), relative change (%), time to peak change (s) or area under the curve (mm(.)s). In hemodialysis patients with atherosclerosis, area under the curve analysis showed a significantly (p < 0.05) decreased endothelial-dependent response (mean +/- S.D.: 19.2 +/- 17.4) compared to non-atherosclerotic patients (42.3 +/- 28.6). However, when analysing these data using absolute change, relative change or time to peak dilatation, there were no significant differences between the two groups. Conclusions: In summary, there was no relationship between low-density lipoproteins and endothelial function in hemodialysis patients. In addition, area under the curve analysis of flow-mediated vasodilatation data may be a useful method of determining the temporal vascular response during the procedure. (c) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Endothelial dysfunction plays an important role in the pathogenesis of coronary artery disease (CAD). Apart from traditional risk factors complement activation and inflammation may trigger and sustain endothelial dysfunction. We sought to assess the association between endothelial function, high sensitivity C-reactive protein (hs-CRP) and markers of complement activation in patients with either stable or unstable coronary artery disease. Methods: We prospectively recruited 78 patients, 35 patients with stable angina pectoris (SAP) and 43 patients with unstable angina pectoris (UAP). Endothelial function was assessed as brachial artery reactivity (BAR). Hs-CRP, C3a, C5a, and C1-Inhibitor (C1 inh.) were measured enzymatically. Results: Patients with IJAP showed higher median levels of hs-CRP and C3a compared to patients with SAP, while BAR was not significantly different between patient groups. In UAP patients, hs-CRP was significantly correlated with cholesterol (r = 0.27, p < 0.02), C3a (r = 0.32, p < 0.001) and C1 INH.(r = 0.41, p < 0.003), but not with flow mediated dilatation (r = 0.09, P = 0.41). Hs-CRP and C1 INH.were found to be independant predictors of IJAP in a backward stepwise logistic regression model. Conclusions: We conclude that both hs-CRP, a marker of inflammation and C3a, a marker of complement activation are elevated in patients with UAP, but not in patients with SAP. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Background: Cyclosporin A (CsA)-treated renal transplant recipients (RTR) exhibit relative hyperhomocystinemia and vascular dysfunction. Folate supplementation lowers homocysteine and has been shown to improve vascular function in healthy subjects and patients with coronary artery disease. The aim of this study was to assess the effects of 3 months of folate supplementation (5 mg/day) on vascular function and structure in RTR. Methods: A double-blind, placebo-controlled crossover study was conducted in 10 CsA-treated RTR. Vascular structure was measured as carotid artery intima media thickness (IMT) and function was assessed as changes in brachial artery diameter during reactive hyperemia (RE) and in response to glyceryl trinitrate (GTN). Function data were analyzed as absolute and percent change from baseline and area under the diameter/time curve. Blood samples were collected before and after supplementation and analyzed for total plasma homocysteine, folate, vitamin B-12 and asymmetric dimethyl arginine (ADMA) in addition to regular measures of hemoglobin, hematocrit, mean corpuscular volume (MCV) and serum creatinine. Results: Folate supplementation significantly increased plasma folate by 687% (p < 0.005) and decreased homocysteine by 37% (p < 0.05) with no changes (p > 0.05) in vitamin B 12 or ADMA. There were no significant (p > 0.05) changes in vascular structure or function during the placebo or the folate supplementation phases; IMT; placebo pre mean +/- SD, 0.52 +/- 0.12, post 0.50 +/- 0.11; folate pre 0.55 +/- 0.17, post 0.49 +/- 10.20 mm 5% change in brachial artery diameter (RH, placebo pre 10 +/- 8, post 6 +/- 5; folate pre 9 +/- 7, post 7 +/- 5; GTN, placebo pre 18 +/- 10, post 17 +/- 9, folate pre 16 +/- 9, post-supplementation 18 +/- 8). Conclusion: Three months of folate supplementation decreases plasma homocysteine but has no effect on endothelial function or carotid artery IMT in RTR.
Resumo:
Hyperhomocysteinemia is a potential risk factor for vascular disease and is associated with endothelial dysfunction, a predictor of adverse cardiovascular events. Renal patients (end-stage renal failure (ESRF) and transplant recipients (RTR)) exhibit both hyperhomocysteinemia and endothelial dysfunction with increasing evidence of a causative link between the 2 conditions. The elevated homocysteine appears to be due to altered metabolism in the kidney (intrarenal) and in the uremic circulation ( extrarenal). This review will discuss 18 supplementation studies conducted in ESRF and 6 in RTR investigating the effects of nutritional therapy to lower homocysteine. The clinical significance of lowering homocysteine in renal patients will be discussed with data on the effects of B vitamin supplementation on cardiovascular outcomes such as endothelial function presented. Folic acid is the most effective nutritional therapy to lower homocysteine. In ESRF patients, supplementation with folic acid over a wide dose range ( 2 - 20 mg/day) either individually or in combination with other B vitamins will decrease but not normalize homocysteine. In contrast, in RTR similar doses of folic acid normalizes homocysteine. Folic acid improves endothelial function in ESRF patients, however this has yet to be investigated in RTR. Homocysteine-lowering therapy is more effective in ESRF patients than RTR.
Resumo:
The improvement of exercise capacity due to exercise training in heart failure has been associated with peripheral adaptation, but the contribution of cardiac responses is less clear. We sought the extent to which the improvement of functional capacity in patients undergoing exercise training for heart failure was related to myocardial performance. Thirty-seven patients (35 men, age 64 +/- 11) with symptomatic heart failure and left ventricular ejection fraction
Resumo:
The expression and function of nicotinic ACh receptors (nAChRs) in rat coronary microvascular endothelial cells (CMECs) were examined using RT-PCR and whole cell patch-clamp recording methods. RT-PCR revealed expression of mRNA encoding for the subunits alpha(2), alpha(3), alpha(4), alpha(5), alpha(7), beta(2), and beta(4) but not beta(3). Focal application of ACh evoked an inward current in isolated CMECs voltage clamped at negative membrane potentials. The current-voltage relationship of the ACh-induced current exhibited marked inward rectification and a reversal potential (E-rev) close to 0 mV. The cholinergic agonists nicotine, epibatidine, and cytisine activated membrane currents similar to those evoked by ACh. The nicotine-induced current was abolished by the neuronal nAChR antagonist mecamylamine. The direction and magnitude of the shift in E-rev of nicotine-induced current as a function of extracellular Na+ concentration indicate that the nAChR channel is cation selective and follows that predicted by the Goldman-Hodgkin-Katz equation assuming K+/Na+ permeability ratio of 1.11. In fura-2-loaded CMECs, application of ACh, but not of nicotine, elicited a transient increase in intracellular free Ca2+ concentration. Taken together, these results demonstrate that neuronal nAChR activation by cholinergic agonists evokes an inward current in CMECs carried primarily by Na+, which may contribute to the plasma nicotine-induced changes in microvascular permeability and reactivity induced by elevations in plasma nicotine.
Resumo:
Background. The growth of solid tumors depends on establishing blood supply; thus, inhibiting tumor angiogenesis has been a long-term goal in cancer therapy. The SOX18 transcription factor is a key regulator of murine and human blood vessel formation. Methods: We established allograft melanoma tumors in wild-type mice, Sox18-null mice, and mice expressing a dominant-negative form of Sox18 (Sox18RaOp) (n = 4 per group) and measured tumor growth and microvessel density by immunohistochemical analysis with antibodies to the endothelial marker CD31 and the pericyte marker NG2. We also assessed the affects of disrupted SOX18 function on MCF-7 human breast cancer and human umbilical vein endothelial cell (HUVEC) proliferation by measuring BrdU incorporation and by MTS assay, cell migration using Boyden chamber assay, and capillary tube formation in vitro. All statistical tests were two-sided. Results: Allograft tumors in Sox18-null and Sox18RaOp mice grew more slowly than those in wild-type mice (tumor volume at day 14, Sox18 null, mean = 486 mm(3), 95% confidence interval [CI] = 345 mm(3) to 627 mm(3), p = .004; Sox18RaOp, mean = 233 mm(3), 95% CI = 73 mm(3) to 119 mm(3), p < .001; versus wild-type, mean = 817 mm(3), 95% CI = 643 mm(3) to 1001 mm(3)) and had fewer CD31- and NG2-expressing vessels. Expression of dominant-negative Sox18 reduced the proliferation of MCF-7 cells (BrdU incorporation: MCF-7(Ra) = 20%, 95% CI = 15% to 25% versus MCF-7 = 41%, 95% CI = 35% to 45%; P = .013) and HUVECs (optical density at 490 nm, empty vector, mean = 0.46 versus SOX18 mean = 0.29; difference = 0.17, 95% CI = 0.14 to 0.19; P = .001) compared with control subjects. Overexpression of wild-type SOX18 promoted capillary tube formation of HUVECs in vitro, whereas expression of dominant-negative SOX18 impaired tube formation of HUVECs and the migration of MCF-7 cells via the disruption of the actin cytoskeleton. Conclusions: SOX18 is a potential target for antiangiogenic therapy of human cancers.
Resumo:
Many serine proteases play important regulatory roles in complex biological systems, but only a few have been linked directly with capillary morphogenesis and angiogenesis. Here we provide evidence that serine protease activities, independent of the plasminogen activation cascade, are required for microvascular endothelial cell reorganization and capillary morphogenesis in vitro. A homology cloning approach targeting conserved motifs present in all serine proteases, was used to identify candidate serine proteases involved in these processes, and revealed 5 genes (acrosin, testisin, neurosin, PSP and neurotrypsin), none of which had been associated previously with expression in endothelial cells. A subsequent gene-specific RT-PCR screen for 22 serine proteases confirmed expression of these 5 genes and identified 7 additional serine protease genes expressed by human endothelial cells, urokinase-type plasminogen activator, protein C,TMPRSS2, hepsin, matriptase/ MT-SPI, dipepticlylpepticlase IV, and seprase. Differences in serine protease gene expression between microvascular and human umbilical vein endothelial cells (HUVECs) were identified and several serine protease genes were found to be regulated by the nature of the substratum, ie. artificial basement membrane or fibrillar type I collagen. mRNA transcripts of several serine protease genes were associated with blood vessels in vivo by in situ hybridization of human tissue specimens. These data suggest a potential role for serine proteases, not previously associated with endothelium, in vascular function and angiogenesis.
Resumo:
The mitogen-activated protein ( MAP) kinases contribute to altered cell growth and function in a variety of disease states. However, their role in the endothelial complications of diabetes mellitus remains unclear. Human endothelial cells were exposed for 72 h to 5 mM ( control) or 25 mM ( high) glucose or 5 mM glucose plus 20 mM mannitol ( osmotic control). The roles of p38 and p42/44 MAP kinases in the high glucose-induced growth effects were determined by assessment of phosphorylated MAP kinases and their downstream activators by Western blot and by pharmacological inhibition of these MAP kinases. Results were expressed as a percentage ( means +/- SE) of control. High glucose increased the activity of total and phosphorylated p38 MAP kinase ( P < 0.001) and p42/44 MAP kinase ( P < 0.001). Coexposure of p38 MAP kinase blocker with high glucose reversed the antiproliferative but not the hypertrophic effects associated with high-glucose conditions. Transforming growth factor (TGF)-beta1 increased the levels of phosphorylated p38 MAP kinase, and p38 MAP kinase blockade reversed the antiproliferative effects of this cytokine. The high glucose-induced increase in phosphorylated p38 MAP kinase was reversed in the presence of TGF-beta1 neutralizing antibody. Although hyperosmolarity also induced antiproliferation (P < 0.0001) and cell hypertrophy (P < 0.05), there was no change in p38 activity, and therefore inhibition of p38 MAP kinase had no influence on these growth responses. Blockade of p42/44 MAP kinase had no effect on the changes in endothelial cell growth induced by either high glucose or hyperosmolarity. High glucose increased p42/44 and p38 MAP kinase activity in human endothelial cells, but only p38 MAP kinase mediated the antiproliferative growth response through the effects of autocrine TGF-beta1. High glucose-induced endothelial cell hypertrophy was independent of activation of the MAP kinases studied. In addition, these effects were independent of any increase in osmolarity associated with high-glucose exposure.
Resumo:
Background: Brachial artery reactivity (BAR), carotid intima-media thickness (IMT), and applanation tonometry for evaluation of total arterial compliance may provide information about preclinical vascular disease. We sought to determine whether these tests could be used to identify patients with coronary artery disease (CAD) without being influenced by their ability to identify those at risk ford CAD developing. Methods: We studied 100 patients and compared 3 groups: 35 patients with known CAD; 34 patients with symptoms and risk factors but no CAD identified by stress echocardiography (risk group); and 31 control subjects. BAR and IMT were measured using standard methods, and total arterial compliance was calculated by the pulse-pressure method from simultaneous radial applanation tonometry and pulsed wave Doppler of the left ventricular outflow. Ischemia was identified as a new or worsening wall-motion abnormality induced by stress. Results: In a comparison between the control subjects and patients either at risk for developing CAD or with CAD, the predictors of risk for CAD were: age (P = .01); smoking history (P = .002); hypercholesterolemia (P = .002); and hypertension (P = .004) (model R = 0.82; P = .0001). The independent predictors of CAD were: IMT (P = .001); BAR (P = .04); sex (P = .005); and hypertension (P = .005) (model R = 0.80; P = .0001). Conclusion: IMT, BAR, and traditional cardiovascular risk factors appear to identify patients at risk for CAD developing. However, only IMT was significantly different between patients at risk for developing CAD and those with overt CAD.