53 resultados para Quantitative structure-property relationship

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of small quantities (similar to 5 wt pct) layered silicates into polymer materials has the potential to greatly increase the modulus without adversely affecting the toughness or processability of the composite. The effect of microstructural features in the polymer nanocomposite and their possible effects on the mechanical properties with particular reference to linear low density polyethylene (LLDPE)/montmorillonite nanocomposites was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss recent progress towards the establishment of important structure-property-function relationships in eumelanins-key functional bio-macromolecular systems responsible for photoprotection and immune response in humans, and implicated in the development of melanoma skin cancer. We focus on the link between eumelanin's secondary structure and optical properties such as broad band UV-visible absorption and strong non-radiative relaxation; both key features of the photo-protective function. We emphasise the insights gained through a holistic approach combining optical spectroscopy with first principles quantum chemical calculations, and advance the hypothesis that the robust functionality characteristic of eumelanin is related to extreme chemical and structural disorder at the secondary level. This inherent disorder is a low cost natural resource, and it is interesting to speculate as to whether it may play a role in other functional bio-macromolecular systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report first-principles density-functional calculations for hydroquinone (HQ), indolequinone (IQ), and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of biomacromolecules with important biological functions (including photoprotection) and with the potential for certain bioengineering applications. We have used the difference of self-consistent fields method to study the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, HL. We show that HL is similar in IQ and SQ, but approximately twice as large in HQ. This may have important implications for our understanding of the observed broadband optical absorption of the eumelanins. The possibility of using this difference in HL to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules have significantly different infrared and Raman signatures, and so these spectra could be used in situ to nondestructively identify the monomeric content of macromolecules. It is hoped that this may be a helpful analytical tool in determining the structure of eumelanin macromolecules and hence in helping to determine the structure-property-function relationships that control the behavior of the eumelanins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pore structure stability of MCM-41 materials upon hydration/dehydration was studied by XRD, Si-29 MAS NMR, and gravimetric adsorption techniques. Results demonstrated that collapses of the pore structure of MCM-41 occurred upon rehydration at room temperature due to the hydrolysis of the bare Si-O-Si(Al) bonds in the presence of water vapor. Full structure collapses of MCM-41 were found to occur when a MCM-41 sample was left in air for three months. It is also suggested that care must be taken when XRD is used to evaluate the structure property of MCM-41 materials to avoid the possible adverse effects of water vapor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional solution structure of conotoxin TVIIA, a 30-residue polypeptide from the venom of the piscivorous cone snail Conus tulipa, has been determined using 2D H-1 NMR spectroscopy. TVIIA contains six cysteine residues which form a 'four-loop' structural framework common to many peptides from Conus venoms including the omega-, delta-, kappa-, and mu O-conotoxins. However, TVIIA does not belong to these well-characterized pharmacological classes of conotoxins, but displays high sequence identity with conotoxin GS, a muscle sodium channel blocker from Conus geographus. Structure calculations were based on 562 interproton distance restraints inferred from NOE data, together with 18 backbone and nine side-chain torsion angle restraints derived from spin-spin coupling constants. The final family of 20 structures had mean pairwise rms differences over residues 2-27 of 0.18 +/- 0.05 Angstrom for the backbone atoms and 1.39 +/- 0.33 Angstrom for all heavy atoms. The structure consists of a triple-stranded, antiparallel beta sheet with +2x, -1 topology (residues 7-9, 16-20 and 23-27) and several beta turns. The core of the molecule is formed by three disulfide bonds which form a cystine knot motif common to many toxic and inhibitory polypeptides. The global fold, molecular shape and distribution of amino-acid sidechains in TVIIA is similar to that previously reported for conotoxin GS, and comparison with other four-loop conotoxin structures provides further indication that TVIIA and GS represent a new and distinct subgroup of this structural family. The structure of TVIIA determined in this study provides the basis for determining a structure-activity relationship for these molecules and their interaction with target receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The venoms of Conus snails contain small, disulfide-rich inhibitors of voltage-dependent sodium channels. Conotoxin GS is a 34-residue polypeptide isolated from Conus geographus that interacts with the extracellular entrance of skeletal muscle sodium channels to prevent sodium ion conduction. Although conotoxin GS binds competitively with mu conotoxin GIIIA to the sodium channel surface, the two toxin types have little sequence identity with one another, and conotoxin GS has a four-loop structural framework rather than the characteristic three-loop mu-conotoxin framework. The structural study of conotoxin GS will form the basis for establishing a structure-activity relationship and understanding its interaction with the pore region of sodium channels. Results: The three-dimensional structure of conotoxin GS was determined using two-dimensional NMR spectroscopy. The protein exhibits a compact fold incorporating a beta hairpin and several turns. An unusual feature of conotoxin GS is the exceptionally high proportion (100%) of cis-imide bond geometry for the three proline or hydroxyproline residues. The structure of conotoxin GS bears little resemblance to the three-loop mu conotoxins, consistent with the low sequence identity between the two toxin types and their different structural framework. However, the tertiary structure and cystine-knot motif formed by the three disulfide bonds is similar to that present in several other polypeptide ion channel inhibitors. Conclusions: This is the first three-dimensional structure of a 'four-loop' sodium channel inhibitor, and it represents a valuable new structural probe for the pore region of voltage-dependent sodium channels. The distribution of amino acid sidechains in the structure creates several polar and charged patches, and comparison with the mu conotoxins provides a basis for determining the binding surface of the conotoxin GS polypeptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) catalyzes the first common step in branched-chain amino acid biosynthesis. The enzyme is inhibited by several chemical classes of compounds and this inhibition is the basis of action of the sulfonylurea and imidazolinone herbicides. The commercial sulfonylureas contain a pyrimidine or a triazine ring that is substituted at both meta positions, thus obeying the initial rules proposed by Levitt. Here we assess the activity of 69 monosubstituted sulfonylurea analogs and related compounds as inhibitors of pure recombinant Arabidopsis thaliana AHAS and show that disubstitution is not absolutely essential as exemplified by our novel herbicide, monosulfuron (2-nitro-N-(4'-methyl-pyrimidin-2'-yl) phenyl-sulfonylurea), which has a pyrimidine ring with a single meta substituent. A subset of these compounds was tested for herbicidal activity and it was shown that their effect in vivo correlates well with their potency in vitro as AHAS inhibitors. Three-dimensional quantitative structure-activity relationships were developed using comparative molecular field analysis and comparative molecular similarity indices analysis. For the latter, the best result was obtained when steric, electrostatic, hydrophobic and H-bond acceptor factors were taken into consideration. The resulting fields were mapped on to the published crystal structure of the yeast enzyme and it was shown that the steric and hydrophobic fields are in good agreement with sulfonylurea-AHAS interaction geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scorpion toxins are important experimental tools for characterization of vast array of ion channels and serve as scaffolds for drug design. General public database entries contain limited annotation whereby rich structure-function information from mutation studies is typically not available. SCORPION2 contains more than 800 records of native and mutant toxin sequences enriched with binding affinity and toxicity information, 624 three-dimensional structures and some 500 references. SCORPION2 has a set of search and prediction tools that allow users to extract and perform specific queries: text searches of scorpion toxin records, sequence similarity search, extraction of sequences, visualization of scorpion toxin structures, analysis of toxic activity, and functional annotation of previously uncharacterized scorpion toxins. The SCORPION2 database is available at http://sdmc.i2r.a-star.edu.sg/scorpion/. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drugs known to inhibit the metabolism of cyclosporine are administered concomitantly to those who undergo cardiothoracic transplantation. The aim of this study was to examine in quantitative terms the relationship between cyclosporine oral dose rate and the trough concentration (Css(trough)) at steady state in patients who undergo cardiothoracic transplantation and are administered cyclosporine alone or in combination with drugs known to inhibit its metabolism. Dose and whole blood cyclosporine Css(tough) observations measured using the enzyme-multiplied immunoassay technique (EMIT) (396 observations) or the TDx assay (435 observations) were collected as part of routine blood concentration monitoring from 182 patients who underwent cardiothoracic transplantation. Data were analyzed using a linear mixed-effects modeling approach to examine the effect of metabolic inhibitors on dose-rate-Css(trough) ratio. The mean (and 95% confidence interval) dose-rate-Css(trough) ratio for cyclosporine generated from concentrations measured using EMIT was 94 (82.5-105.5) Lh(-1) for patients administered cyclosporine alone, 66.7 (58.1-75.3) Lh(-1) for patients administered concomitant diltiazem, 47.9 (15.4 -80.4) Lh(-1) for patients administered concomitant itraconazole, 21.7 (14.8-28.5) Lh(-1) for patients administered concomitant ketoconazole, and 14.9 (11.8-18.1) Lh(-1) for patients concomitantly administered diltiazem and ketoconazole. For patients administered concomitant cyclosporine, ketoconazole, and diltiazem, the dosage of cyclosporine, if it is administered alone, should be 20% to achieve the same blood concentrations. This will allow safer drug concentration targeting of cyclosporine after cardiothoracic transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high speciFIcity of alpha-conotoxins for different neuronal nicotinic acetylcholine receptors makes them important probes for dissecting receptor subtype selectivity. New sequences continue to expand the diversity and utility of the pool of available alpha-conotoxins. Their identification and characterization depend on a suite of techniques with increasing emphasis on mass spectrometry and microscale chromatography, which have benefited from recent advances in resolution and capability. Rigorous physicochemical analysis together with synthetic peptide chemistry is a prerequisite for detailed conformational analysis and to provide sufficient quantities of alpha-conotoxins for activity assessment and structure-activity relationship studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.