3 resultados para QUANTUM WELL STRUCTURES
em University of Queensland eSpace - Australia
Resumo:
Microstructural and optical properties of InAs-inserted and reference single GaAsN/GaAs quantum-well (QW) structures grown by metalorganic chemical vapor deposition were investigated using cross-sectional transmission electron microscopy and photoluminescence (PL). Significant enhancement of PL intensity and a blueshift of PL emission were observed from the InAs-inserted GaAsN/GaAs QW structure, compared with the single GaAsN/GaAs QW structure. Strain compensation and In-induced reduction of N incorporation are suggested to be two major factors affecting the optical properties. (C) 2004 American Institute of Physics.
Resumo:
Spin precession due to Rashba spin-orbit coupling in a two-dimension electron gas is the basis for the spin field effect transistor, in which the overall perfect spin-polarized current modulation could be acquired. There is a prerequisite, however, that a strong transverse confinement potential should be imposed on the electron gas or the width of the confined quantum well must be narrow. We propose relieving this rather strict limitation by applying an external magnetic field perpendicular to the plane of the electron gas because the effect of the magnetic field on the conductance of the system is equivalent to the enhancement of the lateral confining potential. Our results show that the applied magnetic field has little effect on the spin precession length or period although in this case Rashba spin-orbit coupling could lead to a Zeeman-type spin splitting of the energy band.
Resumo:
The power of advanced transmission electron microscopy in determining the nanostructures and chemistry of nanosized materials on the applications in semiconductor quantum structures was demonstrated.