24 resultados para Pyridinic alkaloid analogs

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The malarial parasite Plasmodium falciparum depends on the purine salvage enzyme hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) to convert purine bases from the host to nucleotides needed for DNA and RNA synthesis. An approach to developing antimalarial drugs is to use HGXPRT to convert introduced purine base analogs to nucleotides that are toxic to the parasite. This strategy requires that these compounds be good substrates for the parasite enzyme but poor substrates for the human counterpart, HGPRT. Bases with a chlorine atom in the 6-position or a nitrogen in the 8-position exhibited strong discrimination between P. falciparum HGXPRT and human HGPRT. The k(cat)/K-m values for the Plasmodium enzyme using 6-chloroguanine and 8-azaguanine as substrates were 50-80-fold and 336-fold higher than for the human enzyme, respectively. These and other bases were effective in inhibiting the growth of the parasite in vitro, giving IC50 values as low as 1 mu M.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Between 1085 and 1927, epidemics of convulsive ergotism were widespread east of the Rhine in Europe due to consumption of grain contaminated with ergot, which is produced by the fungus Claviceps purpurea. West of the Rhine, consumption of ergot-contaminated food caused epidemics of gangrenous ergotism. The clinical features of convulsive ergotism-muscle twitching and spasms, changes in mental state, hallucinations, sweating, and fever lasting for several weeks-suggest serotonergic overstimulation of the CNS (ie, the serotonin syndrome). The ergot alkaloids are serotonin agonists. Dihydroergotamine binds to serotonin receptors in the dorsal horn of the spinal cord, which is the site of neuropathological changes in convulsive ergotism. Dihydroergotamine given to human beings can cause the serotonin syndrome. Ergots produced by different strains of Claviceps purpurea, and those growing in different soils, may have different ergot alkaloid compositions. An alkaloid, present in high concentrations in ergots from east of the Rhine, may have caused convulsive ergotism at a circulating concentration insufficient to produce peripheral ischaemia. The serotonin syndrome may, therefore, have been a public-health problem long before it was recognised as a complication of modem psychopharmacology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ketol-acid reductoisomerase (EC 1.1.1.86) catalyses the second reaction in the biosynthesis of branched-chain amino acids. The reaction involves an Mg2+-dependent alkyl migration followed by an NADPH-dependent reduction of the 2-keto group. Here, the crystallization of the Escherichia coli enzyme is reported. A form with a C-terminal hexahistidine tag could be crystallized under 18 different conditions in the absence of NADPH or Mg2+ and a further six crystallization conditions were identified with one or both ligands. With the hexahistidine tag on the N-terminus, 20 crystallization conditions were found, some of which required the presence of NADPH, NADP(+), Mg2+ or a combination of ligands. Finally, the selenomethionine-substituted enzyme with the N-terminal tag crystallized under 15 conditions. Thus, the enzyme is remarkably easy to crystallize. Most of the crystals diffract poorly but several data sets were collected at better than 3.2 Angstrom resolution; attempts to phase them are currently in progress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new indole alkaloid, akuammiginone (1), and a new glycosidic indole alkaloid, echitamidine-N-oxide 19-O-beta-D-glucopyranoside (2), together with the five known alkaloids, echitaminic acid (3), echitamidine N-oxide (4), N-b-demethylalstogustine N-oxide (5), akuammicine N-oxide (6), and N-b-demethylalstogustine (7), were isolated from the trunk bark of Alstonia scholaris collected in Timor, Indonesia. The structures of all compounds were elucidated by spectroscopic methods. This is the first report of compounds 3-5 and 7 in A. scholaris. Some NMR assignments of the known compounds were revised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human C5a is a plasma protein with potent chemoattractant and pro-inflammatory properties, and its overexpression correlates with severity of inflammatory diseases. C5a binds to its G protein-coupled receptor (C5aR) on polymorphonuclear leukocytes (PMNLs) through a high-affinity helical bundle and a low-affinity C terminus, the latter being solely responsible for receptor activation. Potent and selective C5a antagonists are predicted to be effective anti-inflammatory drugs, but no pharmacophore for small molecule antagonists has yet been developed, and it would significantly aid drug design. We have hypothesized that a turn conformation is important for activity of the C terminus of C5a and herein report small cyclic peptides that are stable turn mimics with potent antagonism at C5aR on human PMNLs. A comparison of solution structures for the C terminus of C5a, small acyclic peptide ligands, and cyclic antagonists supports the importance of a turn for receptor binding. Competition between a cyclic antagonist and either C5a or an acyclic agonist for C5aR on PMNLs supports a common or overlapping binding site on the C5aR. Structure-activity relationships for 60 cyclic analogs were evaluated by competitive radioligand binding with C5a (affinity) and myeloperoxidase release (antagonist potency) from human PMNLs, with 20 compounds having high antagonist potencies (IC50, 20 nM(-1) muM). Computer modeling comparisons reveal that potent antagonists share a common cyclic backbone shape, with affinity-determining side chains of defined volume projecting from the cyclic scaffold. These results define a new pharmacophore for C5a antagonist development and advance our understanding of ligand recognition and receptor activation of this G protein-coupled receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A benzothiazole-derived compound (4a) designed to mimic the C-alpha-C-beta bond vectors and terminal functionalities of Lys2, TyrI3 and Arg17 in omega-conotoxin GVIA was synthesised, together with analogues (4b-d), which had each side-chain mimic systematically truncated or eliminated. The affinity of these compounds for rat brain N-type and P/Q-type voltage gated calcium channels (VGCCs) was determined. In terms of N-type channel affinity and selectivity, two of these compounds (4a and 4d) were found to be highly promising, first generation mimetics of omega-conotoxin. The fully functionalised mimetic (4a) showed low PM binding affinity to N-type VGCCs (IC50 = 1.9 muM) and greater than 20-fold selectivity for this channel sub-type over P/Q-type VGCCs, whereas the mimetic in which the guanidine-type side chain was truncated back to an amine (4d, IC50 = 4.1 muM) showed a greater than 25-fold selectivity for the N-type channel. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for orally effective drugs for the treatment of iron overload disorders is an important goal in improving the health of patients suffering diseases such as beta-thalassemia major. Herein, we report the syntheses and characterization of some new members of a series of N-aroyl-N'-picolinoyl hydrazine chelators (the H2IPH analogs). Both 1:1 and 1:2 Fe-III:L complexes were isolated and the crystal structures of Fe(HPPH)Cl-2, Fe(4BBPH)Cl-2, Fe(HAPH)(APH) and Fe(H3BBPH)(3BBPH) were determined (H2PPH=N,N'-bis-picolinoyl hydrazine; H(2)APH=N-4-aminobenzoyl-N'-picolinoyl hydrazine, H(2)3BBPH=N-3-bromobenzoyl-N'-picolinoylhydrazine and H(2)4BBPH=N-(4-bromobenzoyl)-N'-(picolinoyl)hydrazine). In each case, a tridentate N,N,O coordination mode of each chelator with Fe was observed. The Fe-III complexes of these ligands have been synthesized and their structural, spectroscopic and electrochemical characterization are reported. Five of these new chelators, namely H2BPH (N-(benzoyl)-N'-(picolinoyl)hydrazine), H2TPH (N-(2-thienyl)-N'-(picolinoyl)-hydrazine), H2PPH, H(2)3BBPH and H(2)4BBPH, showed high efficacy at mobilizing Fe-59 from cells and inhibiting Fe-59 uptake from the serum Fe transport protein, transferrin (Tf). Indeed, their activity was much greater than that found for the chelator in current clinical use, desferrioxamine (DFO), and similar to that observed for the orally active chelator, pyridoxal isonicotinoyl hydrazone (H2PIH). The ability of the chelators to inhibit Fe-59 uptake could not be accounted for by direct chelation of Fe-59-Tf. The most effective chelators also showed low antiproliferative activity which was similar to or less than that observed with DFO, which is important in terms of their potential use as agents to treat Fe-overload disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously shown that complement factor 5a(C5a) plays a role in the pathogenesis of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats by using the selective, orally active C5a antagonist AcF-[OP(D-Cha) WR]. This study tested the efficacy and potency of a new C5a antagonist, hydrocinnamate (HC)-[OP(D-Cha) WR], which has limited intestinal lumenal metabolism, in this model of colitis. Analogs of AcF-[OP(D-Cha) WR] were examined for their susceptibility to alimentary metabolism in the rat using intestinal mucosal washings. One metabolically stable analog, HC-[OP(D-Cha)WR], was then evaluated pharmacokinetically and investigated at a range of doses (0.03 - 10 mg/kg/ day p.o.) in the 8-day rat TNBS- colitis model, against the comparator drug AcF-[OP(D-Cha) WR]. Using various amino acid substitutions, it was determined that the AcF moiety of AcF-[OP(D-Cha) WR] was responsible for the metabolic instability of the compound in intestinal mucosal washings. The analog HC-[OP( D-Cha) WR], equiactive in vitro to AcF-[OP(D-Cha) WR], was resistant to intestinal metabolism, but it displayed similar oral bioavailability to AcF-[OP(D-Cha) WR]. However, in the rat TNBS- colitis model, HC-[OP(D-Cha) WR] was effective at reducing mortality, colon edema, colon macroscopic scores, and increasing food consumption and body weights, at 10- to 30- fold lower oral doses than AcF-[OP( D-Cha) WR]. These studies suggest that resistance to intestinal metabolism by HC-[OP(D-Cha) WR] may result in increased local concentrations of the drug in the colon, thus affording efficacy with markedly lower oral doses than AcF-[OP(D-Cha) WR] against TNBS-colitis. This large increase in potency and high efficacy of this compound makes it a potential candidate for clinical development against intestinal diseases such as inflammatory bowel disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the human cytochrome P450 (CYP) 2A6 was used in order to modify the alkaloid production of tobacco plants. The cDNA for human CYP2A6 was placed under the control of the constitutive 35S promoter and transferred into Nicotiana tabacum via Agrobacterium-mediated transformation. Transgenic plants showed formation of the recombinant CYP2A6 enzyme but no obvious phenotypic changes. Unlike wild-type tobacco, the transgenic plants accumulated cotinine, a metabolite which is usually formed from nicotine in humans. This result substantiates that metabolic engineering of the plant secondary metabolism via mammalian P450 enzymes is possible in vivo. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid access to the ABCE ring system of the C-20 diterpene alkaloids was achieved by silver (I) promoted intramolecular Friedel-Crafts arylation of a functional group specific 5-bromo-3-azabicyclo[3.3.1]nonane derivative. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific 3-azabicyclo[3.3.1]nonane derivatives undergo skeletal cleavage when subjected to light or Lewis acidic conditions affording novel heteratricycles, which is in stark contrast to 3-oxabicyclo[3.3.1]nonanes. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ketol-acid reductoisomerase (EC 1.1.1.86) catalyses the second reaction in the biosynthesis of the branched-chain amino acids. The reaction catalyzed consists of two stages, the first of which is an alkyl migration from one carbon atom to its neighbour. The likely transition state is therefore a cyclopropane derivative, and cyclopropane-1,1-dicarboxylate(CPD) has been reported to inhibit the Escherichia coli enzyme. In addition, this compound causes the accumulation of the substrate of ketol-acid reductoisomerase in plants. Here, we investigate the inhibition of the purified rice enzyme. The cDNA was cloned, and the recombinant protein was expressed in E. coli, purified and characterized kinetically. The purified enzyme is strongly inhibited by cyclopropane-1,1-dicarboxylate, with an inhibition constant of 90 nM. The inhibition is time-dependent and this is due to the low rate constants for formation (2.63 X 10(5) M-1 min(-1)) and dissociation (2.37 x 10(-2) min(-1)) of the enzyme-inhibitor complex. Other cyclopropane derivatives are much weaker inhibitors while dimethylmalonate is moderately effective. (c) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) catalyzes the first common step in branched-chain amino acid biosynthesis. The enzyme is inhibited by several chemical classes of compounds and this inhibition is the basis of action of the sulfonylurea and imidazolinone herbicides. The commercial sulfonylureas contain a pyrimidine or a triazine ring that is substituted at both meta positions, thus obeying the initial rules proposed by Levitt. Here we assess the activity of 69 monosubstituted sulfonylurea analogs and related compounds as inhibitors of pure recombinant Arabidopsis thaliana AHAS and show that disubstitution is not absolutely essential as exemplified by our novel herbicide, monosulfuron (2-nitro-N-(4'-methyl-pyrimidin-2'-yl) phenyl-sulfonylurea), which has a pyrimidine ring with a single meta substituent. A subset of these compounds was tested for herbicidal activity and it was shown that their effect in vivo correlates well with their potency in vitro as AHAS inhibitors. Three-dimensional quantitative structure-activity relationships were developed using comparative molecular field analysis and comparative molecular similarity indices analysis. For the latter, the best result was obtained when steric, electrostatic, hydrophobic and H-bond acceptor factors were taken into consideration. The resulting fields were mapped on to the published crystal structure of the yeast enzyme and it was shown that the steric and hydrophobic fields are in good agreement with sulfonylurea-AHAS interaction geometry.