5 resultados para Power factors

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pumping characteristics of four Australian honey samples were investigated in a straight pipe. Six flow rates (100-500 kg h(-1)) were studied at three temperatures (35-50degreesC). The pressure loss increased with an increase in the length of the pipe, as the low rate was increased and as the temperature was reduced. In the 25.4 mm-pipe, the Reynolds number ranged from 0.2-32.0 and are substantially less than the critica value (2040-2180) for laminar condition in the system. The relationship between the wall shear stress and shear rate approximated power-law behaviour, and the power-law index was not significantly (p>0.05) different from 1.0. The honey samples exhibited Newtonian behaviour at all the temperatures and this was confirmed by rheometric studies using Couette geometry. A friction chart was generated independent of temperature and the type of honey. An equation was developed to predict the pressure loss of the honey in a typical pipeline at any temperature once the viscosity-temperature relationship had been established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power systems are large scale nonlinear systems with high complexity. Various optimization techniques and expert systems have been used in power system planning. However, there are always some factors that cannot be quantified, modeled, or even expressed by expert systems. Moreover, such planning problems are often large scale optimization problems. Although computational algorithms that are capable of handling large dimensional problems can be used, the computational costs are still very high. To solve these problems, in this paper, investigation is made to explore the efficiency and effectiveness of combining mathematic algorithms with human intelligence. It had been discovered that humans can join the decision making progresses by cognitive feedback. Based on cognitive feedback and genetic algorithm, a new algorithm called cognitive genetic algorithm is presented. This algorithm can clarify and extract human's cognition. As an important application of this cognitive genetic algorithm, a practical decision method for power distribution system planning is proposed. By using this decision method, the optimal results that satisfy human expertise can be obtained and the limitations of human experts can be minimized in the mean time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The identification and characterization of genes that influence the risk of common, complex multifactorial disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. We have previously introduced a genetic programming optimized neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of gene combinations associated with disease risk. The goal of this study was to evaluate the power of GPNN for identifying high-order gene-gene interactions. We were also interested in applying GPNN to a real data analysis in Parkinson's disease. Results We show that GPNN has high power to detect even relatively small genetic effects (2–3% heritability) in simulated data models involving two and three locus interactions. The limits of detection were reached under conditions with very small heritability (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The identification and characterization of genes that influence the risk of common, complex multifactorial disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. We have previously introduced a genetic programming optimized neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of gene combinations associated with disease risk. The goal of this study was to evaluate the power of GPNN for identifying high-order gene-gene interactions. We were also interested in applying GPNN to a real data analysis in Parkinson's disease. Results: We show that GPNN has high power to detect even relatively small genetic effects (2-3% heritability) in simulated data models involving two and three locus interactions. The limits of detection were reached under conditions with very small heritability (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate an investment project in the competitive electricity market, there are several key factors that affects the project's value: the present value that the project could bring to investor, the possible future course of actions that investor has and the project's management flexibility. The traditional net present value (NPV) criteria has the ability to capture the present value of the project's future cash flow, but it fails to assess the value brought by market uncertainty and management flexibility. By contrast with NPV, the real options approach (ROA) method has the advantage to combining the uncertainty and flexibility in evaluation process. In this paper, a framework for using ROA to evaluate the generation investment opportunity has been proposed. By given a detailed case study, the proposed framework is compared with NPV and showing a different results