12 resultados para Potassium fertiliser
em University of Queensland eSpace - Australia
Resumo:
Metal ion binding properties of the immunosuppressant drug cyclosporin A have been investigated. Complexation studies in acetonitrile solution using H-1 NMR and CD spectroscopy yielded 1:1 metal-peptide binding constants (log(10)K) for potassium(l), < 1, magnesium(II), 4.8 +/- 0.2. and calcium(II), 5.0 +/- 1.0. The interaction of copper(II) with cyclosporin A in methanol was investigated with UV/visible and electron paramagnetic resonance (EPR) spectroscopy. No complexation of copper(II) was observed in neutral solution. In the presence of base, monomeric copper(II) complexes were detected. These results support the possibility that cyclosporin A has ionophoric properties for biologically important essential metal ions. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Simultaneous fixation was investigated for a marine organism: the monogenean flatworm ectoparasite Merizocotyle icopae. Four protocols for primary fixation were compared: 3% glutaraldehyde alone in OAM cacodylate buffer for a minimum of 2 hours; 1% glutaraldehyde in combination with 1% osmium tetroxide, both in 0.1M cacodylate buffer, until tissues darkened (5-20 minutes); 1% glutaraldehyde in OAM cacodylate buffer in combination with 0.5% potassium ferricyanide-reduced osmium until tissues darkened (5-20 minutes); 1% glutaraldehyde in combination with 1% osmium tetroxide, both in 0.1M cacodylate buffer, for 30 minutes. The study confirms that the standard method for transmission electron microscopic fixation (first listed protocol) routinely applied to platyhelminths is optimal for ultrastructural preservation, but some simultaneous fixation methods (second and third listed protocols) are acceptable when rapid immobilization is needed. Scanning electron microscopic preparations may be improved using simultaneous primary fixation. (C) 2004 Wilcy-Liss, Inc.
Resumo:
Pyramidal neurons in the lateral amygdala discharge trains of action potentials that show marked spike frequency adaptation, which is primarily mediated by activation of a slow calcium-activated potassium current. We show here that these neurons also express an alpha-dendrotoxin- and tityustoxin-Kalpha-sensitive voltage-dependent potassium current that plays a key role in the control of spike discharge frequency. This current is selectively targeted to the primary apical dendrite of these neurons. Activation of mu-opioid receptors by application of morphine or D-Ala(2)-N-Me-Phe(4)-Glycol(5)-enkephalin (DAMGO) potentiates spike frequency adaptation by enhancing the alpha-dendrotoxin-sensitive potassium current. The effects of mu-opioid agonists on spike frequency adaptation were blocked by inhibiting G-proteins with N-ethylmaleimide (NEM) and by blocking phospholipase A(2). Application of arachidonic acid mimicked the actions of DAMGO or morphine. These results show that mu-opioid receptor activation enhances spike frequency adaptation in lateral amygdala neurons by modulating a voltage-dependent potassium channel containing Kv1.2 subunits, through activation of the phospholipase A(2)-arachidonic acid-lipoxygenases cascade.
Resumo:
K+ Channels and Membrane Potential in Endothelial Cells. The endothelium plays a vital role in the control of vascular functions, including modulation of tone; permeability and barrier properties; platelet adhesion and aggregation; and secretion of paracrine factors. Critical signaling events in many of these functions involve an increase in intracellular free Ca2+ concentration ([Ca2+](i)). This rise in [Ca2+](i) occurs via an interplay between several mechanisms, including release from intracellular stores, entry from the extracellular space through store depletion and second messenger-mediated processes, and the establishment of a favorable electrochemical gradient. The focus of this review centers on the role of potassium channels and membrane potential in the creation of a favorable electrochemical gradient for Ca2+ entry. In addition, evidence is examined for the existence of various classes of potassium channels and the possible influence of regional variation in expression and experimental conditions.
Resumo:
The calcium-dependent afterhyperpolarization (AHP) that follows trains of action potentials is responsible for controlling action potential firing patterns in many neuronal cell types. We have previously shown that the slow AHP contributes to spike frequency adaptation in pyramidal neurons in the rat lateral amygdala. In addition, a dendritic voltage-gated potassium current mediated by Kv1.2-containing channels also suppresses action potential firing in these neurons. In this paper we show that this voltage-gated potassium current and the slow AHP act together to control spike frequency adaptation in lateral amygdala pyramidal neurons. The two currents have similar effects on action potential number when firing is evoked either by depolarizing current injections or by synaptic stimulation. However, they differ in their control of firing frequency, with the voltage-gated potassium current but not the slow AHP determining the initial frequency of action potential firing. This dual mechanism of controlling firing patterns is unique to lateral amygdala neurons and is likely to contribute to the very low levels of firing seen in lateral amygdala neurons in vivo.
Resumo:
The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na-v,.) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na-v channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons, P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na-v currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that Occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP. and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na-v. channel gating, observed clinically in response to ciguatera poisoning. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
The potassium (K) nutrition and high K requirement of tropical root crops may be affected by their sodium (Na) status, as has been observed in a number of plant species. Solution culture was used to study the effects of K and Na supplies in tannia [Xanthosoma sagittifolium (L.) Schott.], sweetpotato [Ipomoea batatas (L.) Lam.] and taro [Colocasia esculenta (L.) Schott]. At low K supply, Na ameliorated symptoms of K deficiency and increased growth in tannia, and to a lesser extent in sweetpotato, but not in taro. None of the species responded to Na at adequate K supply. Differences in response to Na were attributed to differences in Na translocation to plant tops. At maximum Na supply, the Na concentration in index leaves averaged 1.82% in tannia, 0.205% in sweetpotato, and 0.0067% in taro. An increase in the supply of Na resulted in a shift in the critical K concentration for deficiency (i.e., 90% of maximum yield) in index leaves from 2.9% to 1.2% in tannia, and from 4.8% to 2.5% in sweetpotato. The critical K concentration in taro was 3.3%, irrespective of Na supply. To overcome the problem in tannia and sweetpotato of determining the critical concentration relevant to a leaf sample of unknown K status, a relationship was established for each species relating the critical K concentration to the concentration of Na in the index leaves.
Resumo:
Diets with more than 30 g K/kg DM have previously been associated with hypomagnesaemia in grazing cattle, and to test whether such diets lead to mineral disorders in sheep, the absorption of Mg and other elements was investigated using experimental diets to which KC I had been added to provide 27, 29, 32 or 34 g K/kg DM. The apparent absorption, balance and apparent retention of Mg, and to a lesser extent Ca, were reduced for sheep offered the diets with 32 or 34 g K/kg DM. The absorption and retention of K, Na, P, Zn, Pb and Cd was not affected by treatment. The blood intracellular Ca concentration was reduced by the diets with 29, 32 or 34 g K/kg DM, compared to the diet with 27 g K/kg DM, but the concentration of other elements was unaffected. Blood plasma Ca concentration was increased at the highest level of K inclusion, providing evidence of mild hyperkalaemia and the involvement of Ca homeostatic mechanisms. It is concluded that Mg absorption by sheep will be impaired if the diet contains more than 30 g K/kg DM, equivalent to an intake of approximately 13 g K/d, but that a high K diet may be beneficial before parturition to accustom the sheep to Ca mobilization before lactation. (c) 2005 Elsevier B.V. All rights reserved.