8 resultados para Possible solutions
em University of Queensland eSpace - Australia
Resumo:
Korea is one of the world's most volatile areas, not least because traditional UN mediation and peacekeeping missions are impossible. Having intervened in the Korean War on behalf of the southern side, the UN is a party to the conflict, rather than a neutral arbiter. The situation is particularly problematic because political interactions are characterized by a high degree of state-control over security policy. In both parts of the peninsula the state has, at least until recently, exercised the exclusive right to deal with the opponent on the other side of the hermetically divided peninsula. Given these domestic and international constrains, alternative approaches to conflict resolution are urgently needed. The recently proliferating literature on human security offers possible solutions, for it urges policy makers to view security beyond the conventional military-based defence of the state and its territory. Using such a conceptual framework, the essay assesses the potential significance non-state interactions between North and South, particularly those that promote communication, information exchange and face-to-face encounters. Even though these interactions remain limited, they are of crucial importance, for they provide an opportunity to reduce the stereotypical threat images that continue to fuel conflict on the peninsula.
Resumo:
Objective: Partnerships in mental health care, particularly between public and private psychiatric services, are being increasingly recognized as important for optimizing patient management and the efficient organization of services. However, public sector mental health services and private psychiatrists do not always work well together and there seem to be a number of barriers to effective collaboration. This study set out to investigate the extent of collaborative 'shared care' arrangements between a public mental health service and private psychiatrists practising nearby. It also examined possible barriers to collaboration and some possible solutions to the identified problems. Method: A questionnaire examining the above factors was sent to all public sector mental health clinicians and all private psychiatrists in the area. Results: One hundred and five of the 154 (68.2%) public sector clinicians and 103 of the 194 (53.1%) private psychiatrists returned surveys. The main barriers to successful collaboration identified by members of both sectors were: 'Difficulty communicating' endorsed by 71.4% of public clinicians and 72% of private psychiatrists, 'Confusion of roles and responsibilities' endorsed by 62.9% and 66%, respectively, and 'Different treatment approach' by 47.6% and 45.6%, respectively. Over 60% of private psychiatrists identified problems with access to the public system as a barrier to successful shared care arrangements. It also emerged, as hypothesized, that the public and private systems tend to manage different patient populations and that public clinicians in particular are not fully aware of the private psychiatrists' range of expertise. This would result in fewer referrals for shared care across the sectors. Conclusions: A number of barriers to public sector clinicians and private psychiatrists collaborating in shared care arrangements were identified. The two groups surveyed identified similar barriers. Some of these can potentially be addressed by changes to service systems. Others require cultural shifts in both sectors. Improved communications including more opportunities for formal and informal meetings between people working in the two sectors would be likely to improve the understanding of the complementary sector's perspective and practice. Further changes would be expected to require careful work between the sectors on training, employment and practice protocols and initiatives, to allow better use of the existing services and resources.
Resumo:
This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added.
Resumo:
Carbon nanotubes (CNT) are well-ordered, high aspect ratio allotropes of carbon. The two main variants, single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) both possess a high tensile strength, are ultra-light weight, and have excellent chemical and thermal stability. They also possess semi- and metallic-conductive properties. This startling array of features has led to many proposed applications in the biomedical field, including biosensors, drug and vaccine delivery and the preparation of unique biomaterials such as reinforced and/or conductive polymer nanocomposites. Despite an explosion of research into potential devices and applications, it is only recently that information on toxicity and biocompatibility has become available. This review presents a summary of the performance of existing carbon biomaterials and gives an outline of the emerging field of nanotoxicology, before reviewing the available and often conflicting investigations into the cytotoxicity and biocompatibility of CNT. Finally, future areas of investigation and possible solutions to current problems are proposed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A head-up display (HUD) is a projection of symbology into the pilot's forward field of view that enables the pilot to monitor the instrumentation while, theoretically, also viewing the external domain. Although the HUD has been shown to improve flight performance, there are perceptual and cognitive issues that need to be addressed. This article reviews selected literature that investigates these issues and the possible solutions posed and identifies areas that remain in doubt.
Resumo:
The testing of concurrent software components can be difficult due to the inherent non-determinism present in these components. For example, if the same test case is run multiple times, it may produce different results. This non-determinism may lead to problems with determining expected outputs. In this paper, we present and discuss several possible solutions to this problem in the context of testing concurrent Java components using the ConAn testing tool. We then present a recent extension to the tool that provides a general solution to this problem that is sufficient to deal with the level of non-determinism that we have encountered in testing over 20 components with ConAn. © 2005 IEEE
Resumo:
In this paper we demonstrate that it is possible to gradually improve the performance of support vector machine (SVM) classifiers by using a genetic algorithm to select a sequence of training subsets from the available data. Performance improvement is possible because the SVM solution generally lies some distance away from the Bayes optimal in the space of learning parameters. We illustrate performance improvements on a number of benchmark data sets.