6 resultados para Plasma enhanced chemical vapour depositions (PECVD)

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron backscattering diffraction has been applied on polycrystalline diamond films grown using microwave plasma assisted chemical vapour deposition on silicon substrate, in order to provide a map of the individual diamond grains, grain boundary, and the crystal orientation of discrete crystallites. The nucleation rate and orientation are strongly affected by using a voltage bias on the substrate to influence and enhance the nucleation process, the bias enhanced nucleation process. In this work, the diamond surface is mapped using electron backscattering diffraction, then a layer of a few microns is ion milled away exposing a lower layer for analysis and so on. This then permits a three dimensions reconstruction of the film texture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The turbostratic mesoporous carbon blacks were prepared by catalytic chemical vapour decomposition (CCVD) of acetylene using Ni/MgO catalysts prepared by co-precipitation. The relationship between deposition conditions and the nanostructures of resultant carbon black materials was investigated. It was found that the turbostratic and textural structures of carbon blacks are dependent on the deposition temperature and nickel catalyst loading. Higher deposition temperature increases the carbon crystallite unit volume V-nano and reduces the surface area of carbon samples. Moreover, a smaller V-nano is produced by a higher Ni loading at the same deposition temperature. In addition of the pore structure and the active metal surface area of the catalyst, the graphitic degree or electronic conductivity of the carbon support is also a key issue to the activity of the supported catalyst. V-nano is a very useful parameter to describe the effect of the crystalline structure of carbon blacks on the reactivity of carbon blacks in oxygen-carbon reaction and the catalytic activity of carbon-supported catalyst in ammonia decomposition semi-quantitatively. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A lithographic method was used to produce polycrystalline diamond films having highly defined surface geometry, showing an array of diamond tips for possible application as a field emitter device. The films grown in this study used microwave plasma assisted chemical vapour deposition (MACVD) on a silicon substrate; the substrate was then dissolved away to reveal the surface features on the diamond film. It is possible to align the crystallite direction and affect the electron emission properties using a voltage bias to enhance the nucleation process and influence the nuclei to a preferred orientation. This study focuses on the identification of the distribution of crystal directions in the film, using electron backscattering diffraction (EBSD) to identify the crystallographic character of the film surface. EBSD allows direct examination of the individual diamond grains, grains boundaries and the crystal orientation of each individual crystallite. The EBSD maps of the bottom (nucleation side) of the films, following which a layer of film is ion-milled away and the mapping process repeated. The method demonstrates experimentally that oriented nucleation occurs and the thin sections allow the crystal texture to be reconstructed in 3-D. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of deposition conditions on characteristic mechanical properties - elastic modulus and hardness - of low-temperature PECVD silicon nitrides is investigated using nanoindentation. lt is found that increase in substrate temperature, increase in plasma power and decrease in chamber gas pressure all result in increases in elastic modulus and hardness. Strong correlations between the mechanical properties and film density are demonstrated. The silicon nitride density in turn is shown to be related to the chemical composition of the films, particularly the silicon/nitrogen ratio. (c) 2006 Elsevier B.V. All rights reserved.