4 resultados para Pinene methoxylation

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of adult cotton bollworm, Helicoverpa armigera (Hubner), to distinguish and respond to enantiomers of alpha-pinene was investigated with electrophysiological and behavioral methods. Electroantennogram recordings using mixtures of the enantiomers at saturating dose levels, and single unit electrophysiology, indicated that the two forms were detected by the same receptor neurons. The relative size of the electroantennogram response was higher for the (-) compared to the (+) form, indicating greater affinity for the (-) form at the level of the dendrites. Behavioral assays investigated the ability of moths to discriminate between, and respond to the (+) and (-) forms of alpha-pinene. Moths with no odor conditioning showed an innate preference for (+)-alpha-pinene. This preference displayed by naive moths was not significantly different from the preferences of moths conditioned on (+)-alpha-pinene. However, we found a significant difference in preference between moths conditioned on the (-) enantiomer compared to naive moths and moths conditioned on (+)-alpha-pinene, showing that learning plays an important role in the behavioral response. Moths are less able to distinguish between enantiomers of alpha-pinene than different odors (e.g., phenylacetaldehyde versus (-)-alpha-pinene) in learning experiments. The relevance of receptor discrimination of enantiomers and learning ability of the moths in host plant choice is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Floral volatiles play a major role in plant-insect communication. We examined the influence of two volatiles, phenylacetaldehyde and a-pinene, on the innate and learnt foraging behaviour of the moth Helicoverpa armigera. In dual-choice wind tunnel tests, adult moths flew upwind towards both volatiles, with a preference for phenylacetaldehyde. When exposure to either of these volatiles was paired with a feeding stimulus (sucrose), all moths preferred the learnt odour in the preference test. This change in preference was not seen when moths were exposed to the odour without a feeding stimulus. The learnt preference for the odour was reduced when moths were left unfed for 24 h before the preference test. We tested whether moths could discriminate between flowers that differed in a single volatile component. Moths were trained to feed on flowers that were odour-enhanced using either phenylacetaldehyde or a-pinene. Choice tests were then carried out in an outdoor flight cage, using flowers enhanced with either volatile. Moths showed a significant preference for the flower type on which they were trained. Moths that were conditioned on flowers that were not odour-enhanced showed no preference for either of the odour-enhanced flower types. The results imply that moths may be discriminating among odour profiles of individual flowers from the same species. We discuss this behaviour within the context of nectar foraging in moths and odour signalling by flowering plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism of pectin gelation depends on the degree of methoxylation. High methoxyl pectin gels due to hydrophobic interactions and hydrogen bonding between pectin molecules. Low methoxyl pectin forms gels in the presence of di- and polyvalent cations which cross link and neutralise the negative charges of the pectin molecule. Monovalent cations normally do not lead to gel formation with high methoxyl pectin solutions free of divalent cations, especially Ca. The present study found that alkali (NaOH or KOH) added to high methoxyl pectin leads to gel formation in a concentration-depended manner. It was also found that monovalent cations (Na and K) induce gelation of low methoxyl pectin and the time required for gel formation (setting time) depends on the cation concentration. The results indicate that a combined char-e neutralisation and ionic strength effect is responsible for the monovalent cation-induced gelation of pectin. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important question in the host-finding behaviour of a polyphagous insect is whether the insect recognizes a suite or template of chemicals that are common to many plants? To answer this question, headspace volatiles of a subset of commonly used host plants (pigeon pea, tobacco, cotton and bean) and nonhost plants (lantana and oleander) of Helicoverpa armigera Hubner (Lepidoptera: Noctuidae) are screened by gas chromatography (GC) linked to a mated female H. armigera electroantennograph (EAG). In the present study, pigeon pea is postulated to be a primary host plant of the insect, for comparison of the EAG responses across the test plants. EAG responses for pigeon pea volatiles are also compared between females of different physiological status (virgin and mated females) and the sexes. Eight electrophysiologically active compounds in pigeon pea headspace are identified in relatively high concentrations using GC linked to mass spectrometry (GC-MS). These comprised three green leaf volatiles [(2E)-hexenal, (3Z)-hexenylacetate and (3Z)-hexenyl-2-methylbutyrate] and five monoterpenes (alpha-pinene,beta-myrcene, limonene, E-beta-ocimene and linalool). Other tested host plants have a smaller subset of these electrophysiologically active compounds and even the nonhost plants contain some of these compounds, all at relatively lower concentrations than pigeon pea. The physiological status or sex of the moths has no effect on the responses for these identified compounds. The present study demonstrates how some host plants can be primary targets for moths that are searching for hosts whereas the other host plants are incidental or secondary targets.