9 resultados para Phe

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatively few cyclic peptides have reached the pharmaceutical marketplace during the past decade, most produced through fermentation rather than made synthetically. Generally, this class of compounds is synthesized for research purposes on milligram scales by solid-phase methods, but if the potential of macrocyclic peptidomimetics is to be realized, low-cost larger scale solution-phase syntheses need to be devised and optimized to provide sufficient quantities for preclinical, clinical, and commercial uses. Here, we describe a cheap, medium-scale, solution-phase synthesis of the first reported highly potent, selective, and orally active antagonist of the human C5a receptor. This compound, Ac-Phe[Orn-Pro-D-Cha-Trp-Arg], known as 3D53, is a macrocyclic peptidomimetic of the human plasma protein C5a and displays excellent antiinflammatory activity in numerous animal models of human disease. In a convergent approach, two tripeptide fragments Ac-Phe-Orn-(Boc)-Pro-OH and H-D-Cha-Trp(For)-Arg-OEt were first prepared by high-yielding solution-phase couplings using a mixed anhydride method before coupling them to give a linear hexapeptide which, after deprotection, was obtained in 38% overall yield from the commercially available amino acids. Cyclization in solution using BOP reagent gave the antagonist in 33% yield (13% overall) after HPLC purification. Significant features of the synthesis were that the Arg side chain was left unprotected throughout, the component Boe-D-Cha-OH was obtained very efficiently via hydrogenation Of D-Phe with PtO2 in TFA/water, the tripeptides were coupled at the Pro-Cha junction to minimize racemization via the oxazolone pathway, and the entire synthesis was carried out without purification of any intermediates. The target cyclic product was purified (>97%) by reversed-phase HPLC. This convergent synthesis with minimal use of protecting groups allowed batches of 50100 g to be prepared efficiently in high yield using standard laboratory equipment. This type of procedure should be useful for making even larger quantities of this and other macrocyclic peptidomimetic drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclic tetrapeptides are an intriguing class of natural products. To synthesize highly strained cyclic tetrapeptides; we developed a macrocyclization strategy that involves the inclusion of 2-hydroxy-6-nitrobenzyl (HnB) group at the N-terminus and in the middle of the sequence. The N-terminal auxiliary performs a ring closure/ring contraction role, and the backbone auxiliary promotes cis amide bonds to facilitate the otherwise difficult ring contraction. Following this route, the all-L cyclic tetrapeptide cyclo-[Tyr-Arg-Phe-Ala] was successfully prepared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human SULT1A1 is primarily responsible for sulfonation of xenobiotics, including the activation of promutagens, and it has been implicated in several forms of cancer. Human SULT1A3 has been shown to be the major sulfotransferase that sulfonates dopamine. These two enzymes shares 93% amino acid sequence identity and have distinct but overlapping substrate preferences. The resolution of the crystal structures of these two enzymes has enabled us to elucidate the mechanisms controlling their substrate preferences and inhibition. The presence of two p-nitrophenol (pNP) molecules in the crystal structure of SULT1A1 was postulated to explain cooperativity at low and inhibition at high substrate concentrations, respectively. In SULT1A1, substrate inhibition occurs with pNP as the substrate but not with dopamine. For SULT1A3, substrate inhibition is found for dopamine but not with pNP. We investigated how substrate inhibition occurs in these two enzymes using molecular modeling, site-directed mutagenesis, and kinetic analysis. The results show that residue Phe-247 of SULT1A1, which interacts with both p-nitrophenol molecules in the active site, is important for substrate inhibition. Mutation of phenylalanine to leucine at this position in SULT1A1 results in substrate inhibition by dopamine. We also propose, based on modeling and kinetic studies, that substrate inhibition by dopamine in SULT1A3 is caused by binding of two dopamine molecules in the active site. © 2004 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyramidal neurons in the lateral amygdala discharge trains of action potentials that show marked spike frequency adaptation, which is primarily mediated by activation of a slow calcium-activated potassium current. We show here that these neurons also express an alpha-dendrotoxin- and tityustoxin-Kalpha-sensitive voltage-dependent potassium current that plays a key role in the control of spike discharge frequency. This current is selectively targeted to the primary apical dendrite of these neurons. Activation of mu-opioid receptors by application of morphine or D-Ala(2)-N-Me-Phe(4)-Glycol(5)-enkephalin (DAMGO) potentiates spike frequency adaptation by enhancing the alpha-dendrotoxin-sensitive potassium current. The effects of mu-opioid agonists on spike frequency adaptation were blocked by inhibiting G-proteins with N-ethylmaleimide (NEM) and by blocking phospholipase A(2). Application of arachidonic acid mimicked the actions of DAMGO or morphine. These results show that mu-opioid receptor activation enhances spike frequency adaptation in lateral amygdala neurons by modulating a voltage-dependent potassium channel containing Kv1.2 subunits, through activation of the phospholipase A(2)-arachidonic acid-lipoxygenases cascade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The C terminus is responsible for all of the agonist activity of C5a at human C5a receptors (C5aRs). In this report we have mapped the ligand binding site on the C5aR using a series of agonist and antagonist peptide mimics of the C terminus of C5a as well as receptors mutated at putative interaction sites ( Ile(116), Arg(175), Arg(206), Glu(199), Asp(282), and Val(286)). Agonist peptide 1 (Phe-Lys-Pro-D-cyclohexylalanine-cyclohexylalanine-D-Arg) can be converted to an antagonist by substituting the bulkier Trp for cyclohexylalanine at position 5 ( peptide 2). Conversely, mutation of C5aR transmembrane residue Ile(116) to the smaller Ala (I116A) makes the receptor respond to peptide 2 as an agonist (Gerber, B. O., Meng, E. C., Dotsch, V., Baranski, T. J., and Bourne, H. R. (2001) J. Biol. Chem. 276, 3394 - 3400). However, a potent cyclic hexapeptide antagonist, Phe-cyclo-[Orn-Pro-D-cyclohexylalanine-Trp-Arg] ( peptide 3), derived from peptide 2 and which binds to the same receptor site, remains a full antagonist at I116AC5aR. This suggests that although the residue at position 5 might bind near to Ile(116), the latter is not essential for either activation or antagonism. Arg(206) and Arg(175) both appear to interact with the C-terminal carboxylate of C5a agonist peptides, suggesting a dynamic binding mechanism that may be a part of a receptor activation switch. Asp(282) has been previously shown to interact with the side chain of the C-terminal Arg residue, and Glu(199) may also interact with this side chain in both C5a and peptide mimics. Using these interactions to orient NMR-derived ligand structures in the binding site of C5aR, a new model of the interaction between peptide antagonists and the C5aR is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cone snail venom is a rich source of bioactives, in particular small disulfide rich peptides that disrupt synaptic transmission. Here, we report the discovery of conomap-Vt (Conp-Vt), an unusual linear tetradecapeptide isolated from Conus vitulinus venom. The sequence displays no homology to known conopeptides, but displays significant homology to peptides of the MATP (myoactive tetradecapeptide) family, which are important endogenous neuromodulators in molluscs, annelids and insects. Conp-Vt showed potent excitatory activity in several snail isolated tissue preparations. Similar to ACh, repeated doses of Conp-Vt were tachyphylactic. Since nicotinic and muscarinic antagonists failed to block its effect and Conp-Vt desensitised tissue remained responsive to ACh, it appears that Conp-Vt contractions were non-cholinergic in origin. Finally, biochemical studies revealed that Conp-Vt is the first member of the MATP family with a D-amino acid. Interestingly, the isomerization of L-Phe to D-Phe enhanced biological activity, suggesting that this post-translational modified conopeptide may have evolved for prey capture. (c) 2006 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sulfite dehydrogenase from Starkeya novella is the only known sulfite-oxidizing enzyme that forms a permanent heterodimeric complex between a molybdenum and a heme c-containing subunit and can be crystallized in an electron transfer competent conformation. Tyr236 is a highly conserved active site residue in sulfite oxidoreductases and has been shown to interact with a nearby arginine and a molybdenum-oxo ligand that is involved in catalysis. We have created a Tyr236 to Phe substitution in the SorAB sulfite dehydrogenase. The purified SDHY236F protein has been characterized in terms of activity, structure, intramolecular electron transfer, and EPR properties. The substituted protein exhibited reduced turnover rates and substrate affinity as well as an altered reactivity toward molecular oxygen as an electron acceptor. Following reduction by sulfite and unlike SDHWT, the substituted enzyme was reoxidized quickly in the presence of molecular oxygen, a process reminiscent of the reactions of the sulfite oxidases. SDHY236F also exhibited the pH-dependent CW-EPR signals that are typically observed in vertebrate sulfite oxidases, allowing a direct link of CW-EPR properties to changes caused by a single-amino acid substitution. No quantifiable electron transfer was seen in laser flash photolysis experiments with SDHY236F. The crystal structure of SDHY236F clearly shows that as a result of the substitution the hydrogen bonding network surrounding the active site is disturbed, resulting in an increased mobility of the nearby arginine. These disruptions underline the importance of Tyr236 for the integrity of the substrate binding site and the optimal alignment of Arg55, which appears to be necessary for efficient electron transfer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To address the issue of melanocortin-1 receptor (MC1R) expression in non-melanocytic cells, we have quantitatively evaluated the relative expression levels of both MC1R mRNA and protein in a subset of different cell types. Using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) at high cycle numbers, we detected MC1R mRNA in all cell types examined, including human embryonic kidney-293 (HEK 293) cells, a cell type widely used as a negative control in melanocortin expression studies. Quantitative real-time PCR revealed the highest levels of MC1R transcripts were in melanocytic cells, whereas the keratinocyte and fibroblast cell cultures examined had only a low level of expression, similar to that of HEK 293 cells. Antibody mediated detection of MC1R protein in membrane extracts demonstrated exogenous receptor in MC1R transfected cell lines, as well as endogenous MC1R in melanoma cells. However, radioligand binding procedures were required to detect MC1R protein of normal human melanocytes and no surface expression of MC1R was detected in any of the non-melanocytic cells examined. This was consistent with their low level of mRNA, and suggests that, if present, the levels of surface receptor are significantly lower than that in melanocytes. The capacity of such limited levels of MC1R protein to influence non-melanocytic skin cell biology would likely be severely compromised. Indeed, the MC1R agonist [NIe(4), D-Phe(7)] alpha-melanocyte stimulating hormone (NDP-MSH) was unable to elevate intracellular cyclic adenosine monophosphate (cAMP) levels in the keratinocyte and fibroblast cells examined, whereas a robust increase was elicited in melanocytes. Although there are a variety of cell types with detectable MC1R mRNA, the expression of physiologically significant levels of the receptor may be more restricted than the current literature indicates, and within epidermal tissue may be limited to the melanocyte

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP27 and PACAP38) on isolated parasympathetic neurons of rat intracardiac and submandibular ganglia were examined under voltage clamp using whole-cell patch-clamp recording techniques. VIP and PACAP (less than or equal to 10 nm) selectively and reversibly increased the affinity of nicotinic acetylcholine receptor channels (nAChRs) for their agonists resulting in a potentiation of acetylcholine (ACh)-evoked whole-cell currents at low agonist concentrations. VIP-induced potentiation was observed with either ACh or nicotine as the cholinergic agonist. The VIP- but not the PACAP-induced potentiation of ACh-evoked currents was inhibited by [Ac-Tyr(1), D-Phe(2)]-GRF 1-29, amide (100 nm), a selective antagonist of VPAC(1) and VPAC(2) receptors; whereas the PACAP38- but not the VIP-induced potentiation was inhibited by 100 nm PACAP6-38, a PAC(1) and VPAC(2) receptor antagonist. The signal transduction pathway mediating VIP- and PACAP-induced potentiation of nicotinic ACh-evoked currents involves a pertussis toxin (PTX)-sensitive G-protein. Intracellular application of 200 mu m GTP gamma S or GDP beta S inhibited VIP-induced potentiation of ACh-evoked whole-cell currents. GTP gamma S alone potentiated ACh- and nicotine-evoked currents and the magnitude of these currents was not further increased by VIP or PACAP. The G-protein subtype modulating the neuronal nAChRs was examined by intracellular dialysis with antibodies directed against alpha(o), alpha(i-1,2), alpha(i-3) or beta G-protein subunits. Only the anti-G alpha(o) and anti-G beta antibodies significantly inhibited the effect of VIP and PACAP on ACh-evoked currents. The potentiation of ACh-evoked currents by VIP and PACAP may be mediated by a membrane-delimited signal transduction cascade involving the PTX-sensitive G(o) protein.