9 resultados para Periaqueductal gray matter (PAG)

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain anatomy is characterized by dramatic growth from the end of the second trimester through the neonatal stage. The characterization of normal axonal growth of the white matter tracts has not been well-documented to date and could provide important clues to understanding the extensive inhomogeneity of white matter injuries in cerebral palsy (CP) patients. However, anatomical studies of human brain development during this period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor magnetic resonance imaging (DTMRI) can reveal detailed anatomy of white matter. We acquired diffusion tensor images (DTI) of postmortem fetal brain samples and in vivo neonates and children. Neural structures were annotated in two-dimensional (2D) slices, segmented, measured, and reconstructed three-dimensionally (3D). The growth status of various white matter tracts was evaluated on cross-sections at 19-20 gestational weeks, and compared with 0-month-old neonates and 5- to 6-year-old children. Limbic, commissural, association, and projection white matter tracts and gray matter structures were illustrated in 3D and quantitatively characterized to assess their dynamic changes. The overall pattern of the time courses for the development of different white matter is that limbic fibers develop first and association fibers last and commissural and projection fibers are forming from anterior to posterior part of the brain. The resultant DTNIRI-based 3D human brain data will be a valuable resource for human brain developmental study and will provide reference standards for diagnostic radiology of premature newborns. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed an anatomical mapping technique to detect hippocampal and ventricular changes in Alzheimer disease (AD). The resulting maps are sensitive to longitudinal changes in brain structure as the disease progresses. An anatomical surface modeling approach was combined with surface-based statistics to visualize the region and rate of atrophy in serial MRI scans and isolate where these changes link with cognitive decline. Fifty-two high-resolution MRI scans were acquired from 12 AD patients (age: 68.4 +/- 1.9 years) and 14 matched controls (age: 71.4 +/- 0.9 years), each scanned twice (2.1 +/- 0.4 years apart). 3D parametric mesh models of the hippocampus and temporal horns were created in sequential scans and averaged across subjects to identify systematic patterns of atrophy. As an index of radial atrophy, 3D distance fields were generated relating each anatomical surface point to a medial curve threading down the medial axis of each structure. Hippocampal atrophic rates and ventricular expansion were assessed statistically using surface-based permutation testing and were faster in AD than in controls. Using color-coded maps and video sequences, these changes were visualized as they progressed anatomically over time. Additional maps localized regions where atrophic changes linked with cognitive decline. Temporal horn expansion maps were more sensitive to AD progression than maps of hippocampal atrophy, but both maps correlated with clinical deterioration. These quantitative, dynamic visualizations of hippocampal atrophy and ventricular expansion rates in aging and AD may provide a promising measure to track AD progression in drug trials. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mechanism Underlying the development of tolerance to morphine, is still incompletely understood. Morphine binds to opioid receptors, Which in turn activates downstream second messenger cascades through heterotrimeric guanine nucleotide binding proteins (G proteins). In this paper, we show that G(z), a member of the inhibitory G protein family, plays an important role in mediating the analgesic and lethality effects of morphine after tolerance development. We blocked signaling through the G(z) second messenger cascade by genetic ablation of the alpha subunit of the G protein in mice. The Galpha(z) knockout Mouse develops significantly increased tolerance to morphine. which depends oil Galpha(z), gene dosage. Further experiments demonstrate that the enhanced morphine tolerance is not caused by pharmacokinetic and behavioural learning mechanisms. The results suggest that G(z) signaling pathways are involved ill transducing the analgesic and lethality effects of morphine following chronic morphine treatment. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyramidal neurons in the lateral amygdala discharge trains of action potentials that show marked spike frequency adaptation, which is primarily mediated by activation of a slow calcium-activated potassium current. We show here that these neurons also express an alpha-dendrotoxin- and tityustoxin-Kalpha-sensitive voltage-dependent potassium current that plays a key role in the control of spike discharge frequency. This current is selectively targeted to the primary apical dendrite of these neurons. Activation of mu-opioid receptors by application of morphine or D-Ala(2)-N-Me-Phe(4)-Glycol(5)-enkephalin (DAMGO) potentiates spike frequency adaptation by enhancing the alpha-dendrotoxin-sensitive potassium current. The effects of mu-opioid agonists on spike frequency adaptation were blocked by inhibiting G-proteins with N-ethylmaleimide (NEM) and by blocking phospholipase A(2). Application of arachidonic acid mimicked the actions of DAMGO or morphine. These results show that mu-opioid receptor activation enhances spike frequency adaptation in lateral amygdala neurons by modulating a voltage-dependent potassium channel containing Kv1.2 subunits, through activation of the phospholipase A(2)-arachidonic acid-lipoxygenases cascade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents the proceedings of a symposium held at the meeting of the International Society for Biomedical Research on Alcoholism (ISBRA) in Mannheim, Germany, in October, 2004. Chronic alcoholism follows a fluctuating course, which provides a naturalistic experiment in vulnerability, resilience, and recovery of human neural systems in response to presence, absence, and history of the neurotoxic effects of alcoholism. Alcohol dependence is a progressive chronic disease that is associated with changes in neuroanatomy, neurophysiology, neural gene expression, psychology, and behavior. Specifically, alcohol dependence is characterized by a neuropsychological profile of mild to moderate impairment in executive functions, visuospatial abilities, and postural stability, together with relative sparing of declarative memory, language skills, and primary motor and perceptual abilities. Recovery from alcoholism is associated with a partial reversal of CNS deficits that occur in alcoholism. The reversal of deficits during recovery from alcoholism indicates that brain structure is capable of repair and restructuring in response to insult in adulthood. Indirect support of this repair model derives from studies of selective neuropsychological processes, structural and functional neuroimaging studies, and preclinical studies on degeneration and regeneration during the development of alcohol dependence and recovery from dependence. Genetics and brain regional specificity contribute to unique changes in neuropsychology and neuroanatomy in alcoholism and recovery. This symposium includes state-of-the-art presentations on changes that occur during active alcoholism as well as those that may occur during recovery-abstinence from alcohol dependence. Included are human neuroimaging and neuropsychological assessments, changes in human brain gene expression, allelic combinations of genes associated with alcohol dependence and preclinical studies investigating mechanisms of alcohol induced neurotoxicity, and neuroprogenetor cell expansion during recovery from alcohol dependence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article represents a symposium of the 2004 ISBRA Congress held in Mannheim. The presentations were: Review of the neuropathological and neurochemical changes seen in alcohol-related ' brain shrinkage ' by Clive Harper; In Vivo Detection of Macrostructural and Microstructural Markers of Brain Integrity in Human Alcoholism and a Rodent Model of Alcoholism by Adolf Pfefferbaum, Elfar Adalsteinsson and Edith Sullivan; Gene and Protein Changes in the Brains of Alcoholics with ' Brain Shrinkage ' by Joanne Lewohl and Peter Dodd; Cross sectional and longitudinal MR spectroscopy studies of chronic adult alcoholics by Michael Taylor; Brain Atrophy Associated with Impairment on a Simulated Gambling Task in Long-Term Abstinent Alcoholics by George Fein and Bennett Landman.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors forward the hypothesis that social exclusion is experienced as painful because reactions to rejection are mediated by aspects of the physical pain system. The authors begin by presenting the theory that overlap between social and physical pain was an evolutionary development to aid social animals in responding to threats to inclusion. The authors then review evidence showing that humans demonstrate convergence between the 2 types of pain in thought, emotion, and behavior, and demonstrate, primarily through nonhuman animal research, that social and physical pain share common physiological mechanisms. Finally, the authors explore the implications of social pain theory for rejection-elicited aggression and physical pain disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although glycine receptor Cl- channels (GlyRs) have long been known to mediate inhibitory neurotransmission onto spinal nociceptive neurons, their therapeutic potential for peripheral analgesia has received little attention. However, it has been shown that alpha 3-subunit-containing GlyRs are concentrated into regions of the spinal cord dorsal horn where nociceptive afferents terminate. Furthermore, inflammatory mediators specifically inhibit alpha 3-containing GlyRs, and deletion of the murine alpha 3 gene confers insensitivity to chronic inflammatory pain. This strongly implicates GlyRs in the inflammation-mediated disinhibition of centrally projecting nociceptive neurons. Future therapies aimed at specifically increasing current flux through alpha 3-containing GlyRs may prove effective in providing analgesia.