24 resultados para PITUITARY-GLAND
em University of Queensland eSpace - Australia
Resumo:
Mutations of the MEN1 gene, encoding the tumor suppressor menin, predispose individuals to the cancer syndrome multiple endocrine neoplasia type 1, characterized by the development of tumors of the endocrine pancreas and anterior pituitary and parathyroid glands. We have targeted the murine Men1 gene by using Cre recombinase-loxP technology to develop both total and tissue-specific knockouts of the gene. Conditional homozygous inactivation of the Men1 gene in the pituitary gland and endocrine pancreas bypasses the embryonic lethality associated with a constitutional Men1(-/-) genotype and leads to beta-cell hyperplasia in less than 4 months and insulinomas and prolactinomas starting at 9 months. The pituitary gland and pancreas develop normally in the conditional absence of menin, but loss of this transcriptional cofactor is sufficient to cause beta-cell hyperplasia in some islets; however, such loss is not sufficient to initiate pituitary gland tumorigenesis, suggesting that additional genetic events are necessary for the latter.
Resumo:
Because the poor growth performance of intensively housed pigs is associated with increased circulating glucocorticoid concentrations, we investigated the effects of glucocorticoid suppression by inducing a humoral immune response to ACTH on physiological and production variables in growing pigs. Grower pigs (28.6 0.9 kg) were immunized with amino acids 1 through 24 of ACTH conjugated to ovalbumin and suspended in diethylaminoethyl (DEAE) dextran-adjuvant or adjuvant alone (control) on d 1, 28, and 56. The ACTH-specific antibody titers generated suppressed increases in cortisol concentrations on d 63 in response to an acute stressor (P = 0.002; control = 71 +/- 8.2 ng/ mL; ACTH-immune = 43 +/- 4.9 ng/mL) without altering basal concentrations. Plasma beta-endorphin concentrations were also increased (P < 0.001) on d 63 (control = 18 +/- 2.1 ng/mL; ACTH-immune = 63 +/- 7.3 ng/mL), presumably because of a release from negative feedback on the expression of proopiomelanocortin in pituitary corticotropes. Immunization against ACTH did not alter ADG (P = 0.120; control = 1,077 25; ACTH-immune = 1,143 25 g) or ADFI (P = 0.64; control = 2,719 42; ACTH-immune = 2,749 42 g) and did not modify behavior (P = 0.681) assessed by measuring vocalization in response to acute restraint. In summary, suppression of stress-induced cortisol responses through ACTH immunization increased beta-endorphin concentrations, but it did not modify ADG, ADFI, or restraint vocalization score in growing pigs.
Resumo:
The nuclectide sequence for pituitary prolactin cDNA from the marsupial bandicoot (Isoodon macrourus) was determined by reverse transcription-polymerase chain reaction and 5'/3' rapid amplification of cDNA ends. The deduced amino acid sequence showed high sequence identity with brushtail possum prolactin (95%) and all of the expected structural features of a quadruped prolactin. A prolactin gene tree was constructed and rates of evolution calculated for bandicoot, possum, opossum and several mammalian and non-mammalian prolactins. Bootstrap analysis provided strong support for marsupials as a sister group with eutherian mammals and weak support for opossum and bandicoot as an independent grouping from the brushtail possum. The rates of molecular evolution for marsupial prolactins were comparable to the slow rate seen in the majority of quadruped prolactins that have been sequenced. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Prolactin and the expression of suppressor of cytokine signaling-3 in the sheep adrenal gland before birth. Am J Physiol Regul Integr Comp Physiol 291: R1399-R1405, 2006. First published June 29, 2006; doi: 10.1152/ajpregu.00252.2006.-The fetal pituitary-adrenal axis plays a key role in the fetal response to intrauterine stress and in the timing of parturition. The fetal sheep adrenal gland is relatively refractory to stimulation in midgestation (90-120 days) before the prepartum activation, which occurs around 135 days gestation (term = 147 +/- 3 days). The mechanisms underlying the switch from adrenal quiescence to activation are unclear. Therefore, we have investigated the expression of suppressor of cytokine signaling-3 (SOCS-3), a putative inhibitor of tissue growth in the fetal sheep adrenal between 50 and 145 days gestation and in the adrenal of the growth-restricted fetal sheep in late gestation. SOCS-3 is activated by a range of cytokines, including prolactin (PRL), and we have, therefore, determined whether PRL administered in vivo or in vitro stimulates SOCS-3 mRNA expression in the fetal adrenal in late gestation. There was a decrease (P < 0.005) in SOCS-3 expression in the fetal adrenal between 54 and 133 days and between 141 and 144 days gestation. Infusion of the dopaminergic agonist, bromocriptine, which suppressed fetal PRL concentrations but did not decrease adrenal SOCS-3 mRNA expression. PRL administration, however, significantly increased adrenal SOCS-3 mRNA expression (P < 0.05). Similarly, there was an increase (P < 0.05) in SOCS-3 mRNA expression in adrenocortical cells in vitro after exposure to PRL (50 ng/ml). Placental and fetal growth restriction had no effect on SOCS-3 expression in the adrenal during late gestation. In summary, the decrease in the expression of the inhibitor SOCS-3 after 133 days gestation may be permissive for a subsequent increase in fetal adrenal growth before birth. We conclude that factors other than PRL act to maintain adrenal SOCS-3 mRNA expression before 133 days gestation but that acute elevations of PRL can act to upregulate adrenal SOCS-3 expression in the sheep fetus during late gestation.
Resumo:
In the European lesser-spotted dogfish Scyliorhinus canicula, rectal gland mass in mg (M-Rg) followed the allometric relationship: M-Rg = 1.15 M-0.68, where M is body mass (g). The concept of allometric scaling is an important consideration in studies investigating the function Of osmoregulatory organs. (C) 2003 the Fisheries Society of the British Isles.
Resumo:
Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24%o SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1parts per thousand rise in salinity. Between 24%o and 33parts per thousand, plasma osmolarity increased by 33% or 4.7% per 1 parts per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28parts per thousand and 33parts per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10parts per thousand, 11-20parts per thousand and 21-33parts per thousand. A comparison between C leucas captured in FW and estuarine environments (20-28%o) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C leucas moving between FW and SW, as well as the ecological implications of these data are discussed. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
One of the great challenges in biology is to understand how particular complex morphological and physiological characters originated in specific evolutionary lineages. In this article, we address the origin of the vertebrate hypothalamic-pituitary-peripheral gland (H-P-PG) endocrine system, a complex network of specialized tissues, ligands and receptors. Analysis of metazoan nucleotide and protein sequences reveals a patchwork pattern of H-P-PG gene conservation between vertebrates and closely related invertebrates (ascidians). This is consistent with a model of how the vertebrate H-P-PG endocrine system could have emerged in relatively few steps by gene family expansion and by regulatory and structural modifications to genes that are present in a chordate ancestor. Some of these changes might have resulted in new connections between metabolic or signaling pathways, such as the bridging of 'synthesis islands' to form an efficient system for steroid hormone synthesis.
Resumo:
One common characteristic of breast cancers arising in carriers of the predisposition gene BRCA1 is a loss of expression of the CDK inhibitor p27(Kip1) (p27), suggesting that p27 interacts epistatically with BRCA1. To investigate this relationship, we examined expression of p27 in mice expressing a dominant negative allele of Brca1 (MMTV-trBr) in the mammary gland. While these mice rarely develop tumors, they showed a 50% increase in p27 protein and a delay in mammary gland development associated with reduced proliferation. In contrast, on a p27 heterozygote background, MMTV-trBrca1 mice showed an increase in S phase cells, and normal mammary development. p27 was the only protein in the cyclin cyclin-dependent kinase network to show altered expression, suggesting that it may be a central mediator of cell cycle arrest in response to loss of function of BRCA1. Furthermore, in human mammary epithelial MCF7 cells expressing BRCA1-specific RNAi and in the BRCA1-deficient human tumor cell line HCC1937, p27 is elevated at the mRNA level compared to cells expressing wild-type BRCA1. We hypothesize that disruption of BRCA1 induces an increase in p27 that inhibits proliferation. Accordingly, reduction in p27 expression leads to enhancement of cellular proliferation in the absence of BRCA1.
Resumo:
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater ( SW). Juvenile C. leucas captured in FW ( 3 mOsm l(-1) kg(-1)) were acclimated to SW ( 980 - 1,000 mOsm l(-1) kg(-1)) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l(-1) kg(-1). In SW, bull sharks had significantly higher plasma osmolarities ( 940 mOsm l(-1) kg(-1)) than FW-acclimated animals and were slightly hypoosmotic to the environment. Plasma Na+, Cl-, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/ K+-ATPase activity. Na+/ K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg(-1) protein h(-1) and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/ K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/ K+-ATPase activity was 5.6 +/- 0.8 and 9.2 +/- 0.6 mmol Pi mg(-1) protein h(-1), respectively. Na+/ K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4 +/- 1.1 and 3.3 +/- 1.1 Pi mg(-1) protein h(-1), respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.
Resumo:
Recent investigations have implicated the medial prefrontal cortex (mPFC) in modulation of subcortical pathways that contribute to the generation of behavioural, autonomic and endocrine responses to stress. However, little is known of the mechanisms involved. One of the key neurotransmitters involved in mPFC function is dopamine, and we therefore aimed, in this investigation, to examine the role of mPFC dopamine in response to stress in Wistar rats. In this regard, we infused dopamine antagonists SCH23390 or sulpiride into the mPFC via retrodialysis. We then examined changes in numbers of cells expressing the c-fos immediate-early gene protein product, Fos, in subcortical neuronal populations associated with regulation of hypothalamic-pituitary-adrenal (HPA) axis stress responses in response to either of two stressors; systemic injection of interleukin-1beta, or air puff. The D-1 antagonist, SCH23390, and the D-2 antagonist, sulpiride, both attenuated expression of Fos in the medial parvocellular hypothalamic paraventricular nucleus (mpPVN) corticotropin-releasing factor cells at the apex of the HPA axis, as well as in most extra-hypothalamic brain regions examined in response to interleukin-1beta. By contrast, SCH23390 failed to affect Fos expression in response to air puff in any brain region examined, while sulpiride resulted in an attenuation of the air puff-induced response in only the mpPVN and the bed nucleus of the stria terminalis. These results indicate that the mPFC differentially processes the response to different stressors and that the two types of dopamine receptor may have different roles.
Resumo:
Australian terrestrial elapid snakes contain amongst the most potently toxic venoms known. However, despite the well-documented clinical effects of snake bite, little research has focussed on individual venom components at the molecular level. To further characterise the components of Australian elapid venoms, a complementary (cDNA) microarray was produced from the venom gland of the coastal taipan (Oxyuranus scutellatus) and subsequently screened for venom gland-specific transcripts. A number of putative toxin genes were identified, including neurotoxins, phospholipases, a pseudechetoxin-like gene, a venom natriuretic peptide and a nerve growth factor together with other genes involved in cellular maintenance. Venom gland-specific components also included a calglandulin-like protein implicated in the secretion of toxins from the gland into the venom. These toxin transcripts were subsequently identified in seven other related snake species, producing a detailed comparative analysis at the cDNA and protein levels. This study represents the most detailed description to date of the cloning and characterisation of different genes associated with envenomation from Australian snakes.
Resumo:
Phytochemicals have provided an abundant and effective source of therapeutics for the treatment of cancer. Here we describe the characterization of a novel plant toxin, persin, with in vivo activity in the mammary gland and a p53-, estrogen receptor-, and Bcl-2-independent mode of action. Persin was previously identified from avocado leaves as the toxic principle responsible for mammary gland-specific necrosis and apoptosis in lactating livestock. Here we used a lactating mouse model to confirm that persin has a similar cytotoxicity for the lactating mammary epithelium. Further in vitro studies in a panel of human breast cancer cell lines show that persin selectively induces a G(2)-M cell cycle arrest and caspase-dependent apoptosis in sensitive cells. The latter is dependent on expression of the BH3-only protein Bim. Bim is a sensor of cytoskeletal integrity, and there is evidence that unique structure of the compound, persin could represent a novel class of microtubule-targeting agent with potential specificity for breast cancers.
Resumo:
The mammary gland is subjected to extensive calcium loads during lactation to support the requirements of milk calcium enrichment. Despite the indispensable nature of calcium homeostasis and signaling in regulating numerous biological functions, the mechanisms by which systemic calcium is transported into milk by the mammary gland are far from completely understood. Furthermore, the implications of calcium signaling in terms of reaulating proliferation, differentiation and apoptosis in the breast are currently uncertain. Deregulation of calcium homeostasis and signaling is associated with mammary gland pathophysiology and as such, calcium transporters, channels and binding proteins represent potential drug targets for the treatment of breast cancer. (c) 2005 Elsevier B.V. All rights reserved.