21 resultados para PIEZOELECTRIC ACTUATORS
em University of Queensland eSpace - Australia
Resumo:
This paper investigates the non-linear bending behaviour of functionally graded plates that are bonded with piezoelectric actuator layers and subjected to transverse loads and a temperature gradient based on Reddy's higher-order shear deformation plate theory. The von Karman-type geometric non-linearity, piezoelectric and thermal effects are included in mathematical formulations. The temperature change is due to a steady-state heat conduction through the plate thickness. The material properties are assumed to be graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The plate is clamped at two opposite edges, while the remaining edges can be free, simply supported or clamped. Differential quadrature approximation in the X-axis is employed to convert the partial differential governing equations and the associated boundary conditions into a set of ordinary differential equations. By choosing the appropriate functions as the displacement and stress functions on each nodal line and then applying the Galerkin procedure, a system of non-linear algebraic equations is obtained, from which the non-linear bending response of the plate is determined through a Picard iteration scheme. Numerical results for zirconia/aluminium rectangular plates are given in dimensionless graphical form. The effects of the applied actuator voltage, the volume fraction exponent, the temperature gradient, as well as the characteristics of the boundary conditions are also studied in detail. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform temperature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the transverse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents an analysis of the thermomechanical behavior of hollow circular cylinders of functionally graded material (FGM). The solutions are obtained by a novel limiting process that employs the solutions of homogeneous hollow circular cylinders, with no recourse to the basic theory or the equations of non-homogeneous thermoclasticity. Several numerical cases are studied, and conclusions are drawn regarding the general properties of thermal stresses in the FGM cylinder. We conclude that thermal stresses necessarily occur in the FGM cylinder, except in the trivial case of zero temperature. While heat resistance may be improved by sagaciously designing the material composition, careful attention must be paid to the fact that thermal stresses in the FGM cylinder are governed by more factors than are its homogeneous counterparts. The results that are presented here will serve as benchmarks for future related work. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The gold surface of a quartz crystal microbalance was modified by the attachment of silica particles derivatised with N-[(3-trimethoxysilyl)propyl] ethylenediaminetriacetic acid. The device was employed to study the kinetics of the interaction of aqueous solutions of lead(II) nitrate and silver(I) nitrate with the surface and for the selective separation of the metal ions.
Resumo:
Piezoelectric polymers have been used to form the basis of dynamic strain gauges for the detection of stress waves. The linearity of response was tested using a split Hopkinson pressure bar arrangement. The results obtained illustrate the effectiveness of piezoelectric film strain gauges in the measurement of axial stress waves.
Resumo:
The electromechanical transfer characteristics of adhesively bonded piezoelectric sensors are investigated. By the use of dynamic piezoelectricity theory, Mindlin plate theory for flexural wave propagation, and a multiple integral transform method, the frequency-response functions of piezoelectric sensors with and without backing materials are developed and the pressure-voltage transduction functions of the sensors calculated. The corresponding simulation results show that the sensitivity of the sensors is not only dependent on the sensors' inherent features, such as piezoelectric properties and geometry, but also on local characteristics of the tested structures and the admittance and impedance of the attached electrical circuit. It is also demonstrated that the simplified rigid mass sensor model can be used to analyze successfully the sensitivity of the sensor at low frequencies, but that the dynamic piezoelectric continuum model has to be used for higher frequencies, especially around the resonance frequency of the coupled sensor-structure vibration system.
Resumo:
The technique of permanently attaching piezoelectric transducers to structural surfaces has demonstrated great potential for quantitative non-destructive evaluation and smart materials design. For thin structural members such as composite laminated plates, it has been well recognized that guided Lamb wave techniques can provide a very sensitive and effective means for large area interrogation. However, since in these applications multiple wave modes are generally generated and the individual modes are usually dispersive, the received signals are very complex and difficult to interpret. An attractive way to deal with this problem has recently been introduced by applying piezoceramic transducer arrays or interdigital transducer (IDT) technologies. In this paper, the acoustic wave field in composite laminated plates excited by piezoceramic transducer arrays or IDT is investigated. Based on dynamic piezoelectricity theory, a discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the input impedance characteristics of the transducer and the surface velocity response of the plate. The method enables the quantitative evaluation of the influence of the electrical characteristics of the excitation circuit, the geometric and piezoelectric properties of the transducer array, and the mechanical and geometrical features of the laminate. Numerical results are presented to validate the developed method and show the ability of single wave mode selection and isolation. The results show that the interaction between individual elements of the piezoelectric array has a significant influence on the performance of the IDT, and these effects can not be neglected even in the case of low frequency excitation. It is also demonstrated that adding backing materials to the transducer elements can be used to improve the excitability of specific wave modes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper investigates the input-output characteristics of structural health monitoring systems for composite plates based on permanently attached piezoelectric transmitter and sensor elements. Using dynamic piezoelectricity theory and a multiple integral transform method to describe the propagating and scattered flexural waves an electro-mechanical model for simulating the voltage input-output transfer function for circular piezoelectric transmitters and sensors adhesively attached to an orthotropic composite plate is developed. The method enables the characterization of all three physical processes, i.e. wave generation, wave propagation and wave reception. The influence of transducer, plate and attached electrical circuit characteristics on the voltage output behaviour of the system is examined through numerical calculations, both in frequency and the time domain. The results show that the input-output behaviour of the system is not properly predicted by the transducers' properties alone. Coupling effects between the transducers and the tested structure have to be taken into account, and adding backing materials to the piezoelectric elements can significantly improve the sensitivity of the system. It is shown that in order to achieve maximum sensitivity, particular piezoelectric transmitters and sensors need to be designed according to the structure to be monitored and the specific frequency regime of interest.
Resumo:
A method is proposed for determining the optimal placement and controller design for multiple distributed actuators to reduce the vibrations of flexible structures. In particular, application of piezoceramic patches to a horizontally-slewing single-link flexible manipulator modeled using the assumed modes method is investigated. The optimization method uses simulated annealing and allows placement of any number of distributed actuators of unequal length, although piezoceramics of fixed equal lengths are used in the example. It also designs an linear-quadratic-regulator controller as part of the optimization procedure. The measures of performance used in the investigation to determine optimality are the total mass of the system and the time integral of the absolute value of the hub and tip position error. This study also varies the relative weightings for each of these performance measures to observe the effects on the controller designs and piezoceramic patch positions in the optimized solutions.
Resumo:
Thin, piezoelectric circular plates are frequently used as active components in transducer and smart materials applications. This paper reports on the exact, explicit solution for the transient motion of a piezoelectric circular plate, built-in or simply supported on the edge and electrically grounded over the entire surface. Expressed by elementary Bessel functions and obtained via exact inverse Laplace transforms, the solution enables the efficient calculation of accurate system parameters. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A flexible structure with surface-bonded piezoceramic patches is modelled using Timoshenko beam theory. Exact mode shapes and natural frequencies associated with the flexural motion are computed for various piezoceramic distributed actuator arrangements. The effects of patch placement and of shear on the modal characteristics are demonstrated using a cantilevered beam as an example. Perfect bonding of the piezoceramic to the beam substructure is assumed, and for the purposes of this paper only passive piezoceramic properties are considered. The modelling technique and results obtained in a closed form are intended to assist investigations into the modelling and control of active structures with surface-bonded piezoceramic actuators. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This work deals with the random free vibration of functionally graded laminates with general boundary conditions and subjected to a temperature change, taking into account the randomness in a number of independent input variables such as Young's modulus, Poisson's ratio and thermal expansion coefficient of each constituent material. Based on third-order shear deformation theory, the mixed-type formulation and a semi-analytical approach are employed to derive the standard eigenvalue problem in terms of deflection, mid-plane rotations and stress function. A mean-centered first-order perturbation technique is adopted to obtain the second-order statistics of vibration frequencies. A detailed parametric study is conducted, and extensive numerical results are presented in both tabular and graphical forms for laminated plates that contain functionally graded material which is made of aluminum and zirconia, showing the effects of scattering in thermo-clastic material constants, temperature change, edge support condition, side-to-thickness ratio, and plate aspect ratio on the stochastic characteristics of natural frequencies. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Rectangular piezoceramic transducers are widely used in ultrasonic evaluation and health monitoring techniques and structural vibration control applications. In this paper the flexural waves excited by rectangular transducers adhesively attached to isotropic plates are investigated. In view of the difficulties in developing accurate analytical models describing the transfer characteristics of the transducer due to the complex electromechanical transduction processes and transducer-structure interactions involved, a combined theoretical-experimental approach is developed. A multiple integral transform method is used to describe the propagation behaviour of the waves in the plates, while a heterodyne Doppler laser vibrometer is employed as a non-contact receiver device. This combined theoretical-experimental approach enables the efficient characterization of the electromechanical transfer properties of the piezoelectric transducer which is essential for the development of optimized non-destructive evaluation systems. The results show that the assumption of a uniform contact pressure distribution between the transducer and the plate can accurately predict the frequency spectrum and time domain response signals of the propagating waves along the main axes of the rectangular transmitter element.