47 resultados para P450-catalyzed Hydroxylation
em University of Queensland eSpace - Australia
Resumo:
The mechanism of aliphatic hydroxylation by cytochromes P450 has been the subject of intense debate with several proposed mechanistic alternatives. Various cyclopropyl containing compounds (radical clocks), which can produce both unrearranged and ring opened products upon oxidation, have been key tools in these investigations. In this study, we introduce several cyclopropyl containing fatty acids 1a-4a with which to probe the mechanism of P450s capable of fatty acid hydroxylation. The probes are shown to be capable of distinguishing radical from cationic intermediates due to the rapid equilibration of isomeric cyclopropyl cations. Ring opening of a radical intermediate in an oxidative transformation is expected to yield a single rearranged alcohol, whereas a cation isomerizes prior to ring opening, leading to two isomeric homoallylic alcohols. Oxidation of these probes by P450(BM3) and P450(Biol) gives results consistent with a radical but not a cationic intermediate in fatty acid hydroxylation by these enzymes. Quantitation of the unrearranged and ring opened products gives remarkably homogeneous rates for oxygen rebound of (2-3) x 10(10) s(-1). The effects of introduction of a cyclopropane ring into a fatty acid upon the regiochemistry of hydroxylation are discussed.
Resumo:
The cytochromes P450 are a large family of oxidative haemoproteins that are responsible for a wide variety of oxidative transformations in a variety of organisms. This review focuses upon the reactions catalyzed specifically by bacterial enzymes, which includes aliphatic hydroxylation, alkene epoxidation, aromatic hydroxylation, oxidative phenolic coupling, heteroatom oxidation and dealkylation, and multiple oxidations including C-C bond cleavage. The potential for the practical application of the oxidizing power of these enzymes is briefly discussed.
Resumo:
[GRAPHICS] Oxidation of tetradecanoic and hexadecanoic acids by cytochrome P450(Biol) (CYP107H1) produces mainly the 11-, 12-, and 13-hydroxy C-14 fatty acids and the 11- to 15-hydroxy C-16 fatty acids, respectively. In contrast to previous reports, terminal hydroxylation is not observed. The enantiospecificity of fatty acid hydroxylation by P450(Biol) was also determined, and the enzyme was shown to be moderately selective for production of the (R)-alcohols.
Resumo:
Human cytochrome P450 (P450) 2D6 is an important enzyme involved in the metabolism of drugs, many of which are amines or contain other basic nitrogen atoms. Asp301 has generally been considered to be involved in electrostatic docking with the basic substrates, on the basis of previous modeling studies and site-directed mutagenesis. Substitution of Glu216 with a residue other than Asp strongly attenuated the binding of quinidine, bufuralol, and several other P450 2D6 ligands. Catalytic activity with the substrates bufuralol and 4-methoxyphenethylamine was strongly inhibited by neutral or basic mutations at Glu216 (>95%), to the same extent as the substitution of Asn at Asp301. Unlike the Asp301 mutants, the Gln216 mutant (E216Q) retained 40% enzyme efficiency with the substrate spirosulfonamide, devoid of basic nitrogen, suggesting that the substitutions at Glu216 affect binding of amine substrates more than other catalytic steps. Attempts to induce catalytic specificity toward new substrates by substitutions at Asp301 and Glu216 were unsuccessful. Collectively, the results provide evidence for electrostatic interaction of amine substrates with Glu216, and we propose that both of these acidic residues plus at least another residue(s) is (are) involved in binding the repertoire of P450 2D6 ligands.
Resumo:
Echinacea preparations are widely used herbal remedies for the prevention and treatment of colds. In this study we have investigated the metabolism by human liver microsomes of the alkylamide components from an Echinacea preparation as well as that of pure synthetic alkylamides. No significant degradation of alkylamides was evident in cytosolic fractions. Time and NADPH-dependent degradation of alkylamides was observed in microsomal fractions suggesting they are metabolised by cytochrome P450 (P450) enzymes in human liver. There was a difference in the susceptibility of 2-ene and 2,4-diene pure synthetic alkylamides to microsomal degradation with (2E)-N-isobutylundeca-2-ene-8,10-diynamide (1) metabolised to only a tenth the extent of (2E,4E,8Z,IOZ)-N-isobutyldodeca-2,4,8,10-tetracnamide (3) under identical incubation conditions. Markedly less degradation of 3 was evident in the mixture of alkylamides present in an ethanolic Echinacea extract, suggesting that metabolism by liver P450s was dependent both on their chemistry and the combination present in the incubation. Co-incubation of 1 with 3 at equimolar concentrations resulted in a significant decrease in the metabolism of 3 by liver microsomes. This inhibition by 1, which has a terminal alkyne moiety, was found to be time- and concentration-dependent, and due to a mechanism-based inactivation of the P450s. Alkylamide metabolites were detected and found to be the predicted epoxidation, hydroxylation and dealkylation products. These findings suggest that Echinacea may effect the P450-mediated metabolism of other concurrently ingested pharmaceuticals. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
1. Biological catalysts have the advantage of being able to catalyse chemical reactions with an often exquisite degree of regio- and stereospecificity in contrast with traditional methods of organic synthesis. 2. The cytochrome P450 enzymes involved in human drug metabolism are ideal starting materials for the development of designer biocatalysts by virtue of their catalytic versatility and extreme substrate diversity. Applications can be envisaged in fine chemical synthesis, such as in the pharmaceutical industry and bioremediation. 3. A variety of techniques of enzyme engineering are currently being applied to P450 enzymes to explore their catalytic potential. Although most studies to date have been performed with bacterial P450s, reports are now emerging of work with mammalian forms of the enzymes. 4. The present minireview will explore the rationale and general techniques for redesigning P450s, review the results obtained to date with xenobiotic-metabolising forms and discuss strategies to overcome some of the logistic problems limiting the full exploitation of these enzymes as industrial-scale biocatalysts.
Resumo:
Oxidative metabolism of bilirubin (BR) - a breakdown product of haem with cytoprotective and toxic properties - is an important route of detoxification in addition to glucuronidation. The major enzyme(s) involved in this oxidative degradation are not known. In this paper, we present evidence for a major role of the hepatic cytochrome P450 2A5 (Cyp2a5) in BR degradation during cadmium intoxication, where the BR levels are elevated following induction of haem oxygenase-1 (HO-1). Treatment of DBA/2J mice with CdCl2 induced both the Cyp2a5 and HO-1, and increased the microsomal BR degradation activity. By contrast, the total cytochrome P450 (CYP) content and the expression of Cyp1a2 were down-regulated by the treatment. The induction of the HO-1 and Cyp2a5 was substantial at the mRNA, protein and enzyme activity levels. In each case, the up-regulation of HO-1 preceded that of Cyp2a5 with a 5-10 h interval. BR totally inhibited the microsomal Cyp2a5-dependent coumarin hydroxylase activity, with an IC50 approximately equal to the substrate concentration. The 7-methoxyresorufin 7-O-demethylase (MROD) activity, catalyzed mainly by the Cyp1a2, was inhibited up to 36% by BR. The microsomal BR degradation was inhibited by coumarin and a monoclonal antibody against the Cyp2a5 by about 90%. Furthermore, 7-methoxyresorufin, a substrate for the Cyp1a2, inhibited BR degradation activity by approximately 20%. In sum, the results strongly suggest a major role for Cyp2a5 in the oxidative degradation of BR. Secondly, the coordinated up-regulation of the HO-1 and Cyp2a5 during Cd-mediated injury implicates a network of enzyme systems in the maintenance of balancing BR production and elimination.
Resumo:
The safe clinical use of phenytoin (PHT) is compromised by a drug hypersensitivity reaction, hypothesized to be due to bioactivation of the drug to a protein-reactive metabolite. Previous studies have shown PHT is metabolized to the primary phenol metabolite, HPPH, then converted to a catechol which then autoxidizes to produce reactive quinone. PHT is known to be metabolized to HPPH by cytochromes P450 (P450s) 2C9 and 2C19 and then to the catechol by P450s 2C9, 2C19, 3A4, 3A5, and 3A7. However, the role of many poorly expressed or extrahepatic P450s in the metabolism and/or bioactivation of PHT is not known. The aim of this study was to assess the ability of other human P450s to catalyze PHT metabolism. P450 2C18 catalyzed the primary hydroxylation of PHT with a k(cat) (2.46 +/- 0.09 min(-1)) more than an order of magnitude higher than that of P450 2C9 (0.051 +/- 0.004 min(-1)) and P450 2C19 (0.054 +/- 0.002 min(-1)) and K-m (45 +/- 5 mu M) slightly greater than those of P450 2C9 (12 +/- 4 mu M) and P450 2C19 (29 +/- 4 mu M). P450 2C18 also efficiently catalyzed the secondary hydroxylation of PHT as well as covalent drug-protein adduct formation from both PHT and HPPH in vitro. While P450 2C18 is expressed poorly in the liver, significant expression has been reported in the skin. Thus, P450 2C18 may be important for the extrahepatic tissue-specific bioactivation of PHT in vivo.
Resumo:
The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1-BMR, contains the N-terminally modified residues 22-493 of the human P450 2E1 fused at the C-terminus to residues 473-1049 of the P450 BM3 reductase (BMR). The P450 2E1-BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (K (M)=1.84 +/- 0.09 mM and k (cat) of 2.98 +/- 0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (K (M)=0.65 +/- 0.08 mM and k (cat) of 0.95 +/- 0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.
Cytochrome P450-mediated metabolism of haloperidol and reduced haloperidol to pyridinium metabolites
Resumo:
Haloperidol ( HP) has been reported to undergo cytochrome P450 (P450)-mediated metabolism to potentially neurotoxic pyridinium metabolites; however, the chemical pathways and specific enzymes involved in these reactions remain to be identified. The aims of the current study were to (i) fully identify the cytochrome P450 enzymes capable of metabolizing HP to the pyridinium metabolite, 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-oxobutylpyridinium (HPP+), and reduced HP (RHP) to 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-hydroxybutylpyridinium (RHPP+); and (ii) determine whether 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-oxobutyl-1,2,3,6-tetrahydropyridine (HPTP) and 4-(4-chlorophenyl)1-( 4-fluorophenyl)-4-hydroxybutyl-1,2,3,6-tetrahydropyridine (RHPTP) were metabolic intermediates in these pathways. In vitro studies were conducted using human liver microsomal preparations and recombinant human cytochrome P450 enzymes (P450s 1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19 2D6, 2E1, 3A4, 3A5, and 3A7) expressed in bicistronic format with human NADPH cytochrome P450 reductase in Escherichia coli membranes. Pyridinium formation from HP and RHP was highly correlated across liver preparations, suggesting the same enzyme or enzymes were responsible for both reactions. Cytochrome P450s 3A4, 3A5, and 3A7 were the only recombinant enzymes which demonstrated significant catalytic activity under optimized conditions, although trace levels of activity could be catalyzed by NADPHP450 reductase alone. NADPH-P450 reductase-mediated activity was inhibited by reduced glutathione but not catalase or superoxide dismutase, suggesting O-2-dependent oxidation. No evidence was obtained to support the contention that HPTP and RHPTP are intermediates in these pathways. K-m values for HPP+ (34 +/- 5 mu M) and RHPP+ (64 +/- 4 mu M) formation by recombinant P450 3A4 agreed well with those obtained with human liver microsomes, consistent with P450 3A4 being the major catalyst of pyridinium metabolite formation in human liver.
Resumo:
Background: Increased levels of tumor necrosis factor (TNF)-alpha and oxidative stress have been implicated as factors contributing to hepatic injury in fatty liver diseases. As steatosis is associated with an accelerated progression of fibrosis in chronic hepatitis C (HCV), we hypothesized that the messenger (m)RNA expression of genes involved with the production of reactive oxygen species, inflammation and cellular injury would be increased in liver tissue from subjects with steatosis and chronic HCV. Methods: Real-time polymerase chain reaction was performed to determine relative mRNA expression levels of collagen I, TNF-alpha, cytochrome P450 2E1 (CYP 2E1), transforming growth factor-beta1 and CD14 in liver biopsies from 38 patients with chronic HCV. The mRNA expression levels were compared between subjects with and without steatosis, fibrosis, and inflammation. Results: Multivariate analysis demonstrated that collagen I mRNA expression was increased by 199% in steatosis (P = 0.02), 85% in moderate to severe fibrosis (P = 0.02) and 157% in inflammation (P = 0.03). Livers of patients with steatosis also had an increase in TNF-alpha mRNA expression by 50% (P = 0.03) and CYP 2E1 expression by 37% (P = 0.04) compared with non-steatotic livers. Tumor necrosis factor-alpha protein was localized to Kupffer cells, bile ducts and portal inflammatory cells by immunohistochemistry. Conclusion: Increased expression of TNF-alpha may be involved in the pathogenesis of liver injury and progression of fibrosis in individuals who have steatosis in association with chronic HCV. (C) 2003 Blackwell Publishing Asia Pty Ltd.
Resumo:
Modifications at the N-terminus of the rabbit CYP4B1 gene resulted in expression levels in Escherichia coli of up to 660 nmol/L. Solubilization of the enzyme from bacterial membranes led to substantial conversion to cytochrome P420 unless alpha-naphthoflavone was added as a stabilizing ligand. Mass spectrometry analysis and Edman sequencing of purified enzyme preparations revealed differential N-terminal post-translational processing of the various constructs expressed. Notably, bacterial expression of CYP4B1 produced a holoenzyme with >98.5% of its heme prosthetic group covalently linked to the protein backbone. The near fully covalently linked hernoproteins exhibited similar rates and regioselectivities of lauric acid hydroxylation to that observed previously for the partially heme processed enzyme expressed in insect cells. These studies shed new light on the consequences of covalent heme processing in CYP4B1 and provide a facile system for future mechanistic and structural studies with the enzyme. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Measurement of the temperature-dependence of thrombin-catalyzed cleavage of the Arg(155)-Ser(156) and Arg(284)-Thr(285) peptide bonds in prothrombin and prothrombin-derived substrates has yielded Arrhenius parameters that are far too large for classical mechanistic interpretation in terms of a simple hydrolytic reaction. Such a difference from the kinetic behavior exhibited in trypsin- and chymotrypsin-catalyzed proteolysis of peptide bonds is attributed to contributions by enzyme exosite interactions as well as enzyme conformational equilibria to the magnitudes of the experimentally determined Arrhenius parameters. Although the pre-exponential factor and the energy of activation deduced from the temperature-dependence of rate constants for proteolysis by thrombin cannot be accorded the usual mechanistic significance, their evaluation serves a valuable role by highlighting the existence of contributions other than those emanating from simple peptide hydrolysis to the kinetics of proteolysis by thrombin and presumably other enzymes of the blood coagulation system. (C) 2004 Elsevier B.V. All rights reserved.