3 resultados para Ornstein-Uhlenbeck, Maximal Sobolev regularity, infinite dimension, Wiener spaces
em University of Queensland eSpace - Australia
Resumo:
In a previous paper R. Mathon gave a new construction method for maximal arcs in finite Desarguesian projective planes via closed sets of conics, as well as giving many new examples of maximal arcs. In the current paper, new classes of maximal arcs are constructed, and it is shown that every maximal arc so constructed gives rise to an infinite class of maximal arcs. Apart from when they are of Denniston type or dual hyperovals, closed sets of conics are shown to give maximal arcs that are not isomorphic to the known constructions. An easy characterisation of when a closed set of conics is of Denniston type is given. Results on the geometric structure of the maximal arcs and their duals are proved, as well as on elements of their collineation stabilisers.
Resumo:
For n >= 5 and k >= 4, we show that any minimizing biharmonic map from Omega subset of R-n to S-k is smooth off a closed set whose Hausdorff dimension is at most n - 5. When n = 5 and k = 4, for a parameter lambda is an element of [0, 1] we introduce lambda-relaxed energy H-lambda of the Hessian energy for maps in W-2,W-2 (Omega; S-4) so that each minimizer u(lambda) of H-lambda is also a biharmonic map. We also establish the existence and partial regularity of a minimizer of H-lambda for lambda is an element of [0, 1).
Resumo:
We consider the semilinear Schrodinger equation -Delta(A)u + V(x)u = Q(x)vertical bar u vertical bar(2* -2) u. Assuming that V changes sign, we establish the existence of a solution u not equal 0 in the Sobolev space H-A,V(1) + (R-N). The solution is obtained by a min-max type argument based on a topological linking. We also establish certain regularity properties of solutions for a rather general class of equations involving the operator -Delta(A).