34 resultados para Optical pattern recognition Data processing

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigates human visual processing of simple two-colour patterns using a delayed match to sample paradigm with positron emission tomography (PET). This study is unique in that we specifically designed the visual stimuli to be the same for both pattern and colour recognition with all patterns being abstract shapes not easily verbally coded composed of two-colour combinations. We did this to explore those brain regions required for both colour and pattern processing and to separate those areas of activation required for one or the other. We found that both tasks activated similar occipital regions, the major difference being more extensive activation in pattern recognition. A right-sided network that involved the inferior parietal lobule, the head of the caudate nucleus, and the pulvinar nucleus of the thalamus was common to both paradigms. Pattern recognition also activated the left temporal pole and right lateral orbital gyrus, whereas colour recognition activated the left fusiform gyrus and several right frontal regions. (C) 2001 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recognising the laterality of a pictured hand involves making an initial decision and confirming that choice by mentally moving one's own hand to match the picture. This depends on an intact body schema. Because patients with complex regional pain syndrome type 1 (CRPS1) take longer to recognise a hand's laterality when it corresponds to their affected hand, it has been proposed that nociceptive input disrupts the body schema. However, chronic pain is associated with physiological and psychosocial complexities that may also explain the results. In three studies, we investigated whether the effect is simply due to nociceptive input. Study one evaluated the temporal and perceptual characteristics of acute hand pain elicited by intramuscular injection of hypertonic saline into the thenar eminence. In studies two and three, subjects performed a hand laterality recognition task before, during, and after acute experimental hand pain, and experimental elbow pain, respectively. During hand pain and during elbow pain, when the laterality of the pictured hand corresponded to the painful side, there was no effect on response time (RT). That suggests that nociceptive input alone is not sufficient to disrupt the working body schema. Conversely to patients with CRPS1, when the laterality of the pictured hand corresponded to the non-painful hand, RT increased similar to 380 ms (95% confidence interval 190 ms-590 ms). The results highlight the differences between acute and chronic pain and may reflect a bias in information processing in acute pain toward the affected part.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The volatile components of the chin gland secretion of the wild European rabbit, Oryctolagus cuniculus (L.), were investigated with the use of gas chromatography. Studies of the chemical nature of this secretion by previous workers demonstrated that it was important in the maintenance of social structure in this species. This study identified 34 different volatile components that consist primarily of aromatic and aliphatic hydrocarbons. Especially common are a series of alkyl-substituted benzene derivatives that provide most of the compound diversity in the secretion. Samples of chin gland secretion collected from animals at three different geographical locations, separated by more than 100 km, showed significant differences in composition. This work suggests that variation among populations needs to be considered when undertaking semiochemical research. Alternate nonparametric methods are also used for the analysis of chromatographic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of prophenoloxidase (proPO) in insects is a defense mechanism against intruding microorganisms and parasites. Pattern recognition molecules induce activation of an enzymatic cascade involving serine proteinases, which leads to the conversion of proPO to active phenoloxidase (PO). Phenolic compounds produced by pPO-activation are toxic to invaders. Here, we describe the isolation of a venom protein from the parasitoid, Cotesia rubecula, injected into the host, Pieris rapae, which is homologous to serine proteinase homologs (SPH). The data presented here indicate that the protein interferes with the proteolytic cascade, which under normal circumstances leads to the activation of proPO and melanin formation. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a new second-order method of texture analysis called Adaptive Multi-Scale Grey Level Co-occurrence Matrix (AMSGLCM), based on the well-known Grey Level Co-occurrence Matrix (GLCM) method. The method deviates significantly from GLCM in that features are extracted, not via a fixed 2D weighting function of co-occurrence matrix elements, but by a variable summation of matrix elements in 3D localized neighborhoods. We subsequently present a new methodology for extracting optimized, highly discriminant features from these localized areas using adaptive Gaussian weighting functions. Genetic Algorithm (GA) optimization is used to produce a set of features whose classification worth is evaluated by discriminatory power and feature correlation considerations. We critically appraised the performance of our method and GLCM in pairwise classification of images from visually similar texture classes, captured from Markov Random Field (MRF) synthesized, natural, and biological origins. In these cross-validated classification trials, our method demonstrated significant benefits over GLCM, including increased feature discriminatory power, automatic feature adaptability, and significantly improved classification performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adopting a social identity perspective, the research was designed to examine the interplay between premerger group status and integration pattern in the prediction of responses to a merger. The research employed a 2 (status: high versus low) x 3 (integration pattern: assimilation versus integrational equality versus transformation) between-participants factorial design. We predicted that integration pattern and group status would interact such that the responses of the members of high status group would be most positive under conditions of an assimilation pattern, whereas members of low status groups were expected to favour an integration-equality pattern. After working on a task in small groups, group status was manipulated and the groups worked on a second task. The merger was then announced and the integration pattern was manipulated (e.g., in terms of the logo, location, and decision rules). The main dependent variables were assessed after the merged groups had worked together on a third task. As expected, there was evidence that the effects of group status on responses to the merger were moderated by integration pattern. Field data also indicated that both premerger status and perceived integration pattern influenced employee responses to an organisational merger.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixture models implemented via the expectation-maximization (EM) algorithm are being increasingly used in a wide range of problems in pattern recognition such as image segmentation. However, the EM algorithm requires considerable computational time in its application to huge data sets such as a three-dimensional magnetic resonance (MR) image of over 10 million voxels. Recently, it was shown that a sparse, incremental version of the EM algorithm could improve its rate of convergence. In this paper, we show how this modified EM algorithm can be speeded up further by adopting a multiresolution kd-tree structure in performing the E-step. The proposed algorithm outperforms some other variants of the EM algorithm for segmenting MR images of the human brain. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expectation-maximization (EM) algorithm has been of considerable interest in recent years as the basis for various algorithms in application areas of neural networks such as pattern recognition. However, there exists some misconceptions concerning its application to neural networks. In this paper, we clarify these misconceptions and consider how the EM algorithm can be adopted to train multilayer perceptron (MLP) and mixture of experts (ME) networks in applications to multiclass classification. We identify some situations where the application of the EM algorithm to train MLP networks may be of limited value and discuss some ways of handling the difficulties. For ME networks, it is reported in the literature that networks trained by the EM algorithm using iteratively reweighted least squares (IRLS) algorithm in the inner loop of the M-step, often performed poorly in multiclass classification. However, we found that the convergence of the IRLS algorithm is stable and that the log likelihood is monotonic increasing when a learning rate smaller than one is adopted. Also, we propose the use of an expectation-conditional maximization (ECM) algorithm to train ME networks. Its performance is demonstrated to be superior to the IRLS algorithm on some simulated and real data sets.