24 resultados para Operator Error
em University of Queensland eSpace - Australia
Resumo:
An investigation was undertaken to test the effectiveness of two procedures for recording boundaries and plot positions for scientific studies on farms on Leyte Island, the Philippines. The accuracy of a Garmin 76 Global Positioning System (GPS) unit and a compass and chain was checked under the same conditions. Tree canopies interfered with the ability of the satellite signal to reach the GPS and therefore the GPS survey was less accurate than the compass and chain survey. Where a high degree of accuracy is required, a compass and chain survey remains the most effective method of surveying land underneath tree canopies, providing operator error is minimised. For a large number of surveys and thus large amounts of data, a GPS is more appropriate than a compass and chain survey because data are easily up-loaded into a Geographic Information System (GIS). However, under dense canopies where satellite signals cannot reach the GPS, it may be necessary to revert to a compass survey or a combination of both methods.
Resumo:
Risk-ranking protocols are used widely to classify the conservation status of the world's species. Here we report on the first empirical assessment of their reliability by using a retrospective study of 18 pairs of bird and mammal species (one species extinct and the other extant) with eight different assessors. The performance of individual assessors varied substantially, but performance was improved by incorporating uncertainty in parameter estimates and consensus among the assessors. When this was done, the ranks from the protocols were consistent with the extinction outcome in 70-80% of pairs and there were mismatches in only 10-20% of cases. This performance was similar to the subjective judgements of the assessors after they had estimated the range and population parameters required by the protocols, and better than any single parameter. When used to inform subjective judgement, the protocols therefore offer a means of reducing unpredictable biases that may be associated with expert input and have the advantage of making the logic behind assessments explicit. We conclude that the protocols are useful for forecasting extinctions, although they are prone to some errors that have implications for conservation. Some level of error is to be expected, however, given the influence of chance on extinction. The performance of risk assessment protocols may be improved by providing training in the application of the protocols, incorporating uncertainty in parameter estimates and using consensus among multiple assessors, including some who are experts in the application of the protocols. Continued testing and refinement of the protocols may help to provide better absolute estimates of risk, particularly by re-evaluating how the protocols accommodate missing data.
Resumo:
Systematic protocols that use decision rules or scores arc, seen to improve consistency and transparency in classifying the conservation status of species. When applying these protocols, assessors are typically required to decide on estimates for attributes That are inherently uncertain, Input data and resulting classifications are usually treated as though they arc, exact and hence without operator error We investigated the impact of data interpretation on the consistency of protocols of extinction risk classifications and diagnosed causes of discrepancies when they occurred. We tested three widely used systematic classification protocols employed by the World Conservation Union, NatureServe, and the Florida Fish and Wildlife Conservation Commission. We provided 18 assessors with identical information for 13 different species to infer estimates for each of the required parameters for the three protocols. The threat classification of several of the species varied from low risk to high risk, depending on who did the assessment. This occurred across the three Protocols investigated. Assessors tended to agree on their placement of species in the highest (50-70%) and lowest risk categories (20-40%), but There was poor agreement on which species should be placed in the intermediate categories, Furthermore, the correspondence between The three classification methods was unpredictable, with large variation among assessors. These results highlight the importance of peer review and consensus among multiple assessors in species classifications and the need to be cautious with assessments carried out 4), a single assessor Greater consistency among assessors requires wide use of training manuals and formal methods for estimating parameters that allow uncertainties to be represented, carried through chains of calculations, and reported transparently.
Resumo:
Operator quantum error correction is a recently developed theory that provides a generalized and unified framework for active error correction and passive error avoiding schemes. In this Letter, we describe these codes using the stabilizer formalism. This is achieved by adding a gauge group to stabilizer codes that defines an equivalence class between encoded states. Gauge transformations leave the encoded information unchanged; their effect is absorbed by virtual gauge qubits that do not carry useful information. We illustrate the construction by identifying a gauge symmetry in Shor's 9-qubit code that allows us to remove 3 of its 8 stabilizer generators, leading to a simpler decoding procedure and a wider class of logical operations without affecting its essential properties. This opens the path to possible improvements of the error threshold of fault-tolerant quantum computing.
Resumo:
This paper is an expanded and more detailed version of the work [1] in which the Operator Quantum Error Correction formalism was introduced. This is a new scheme for the error correction of quantum operations that incorporates the known techniques - i.e. the standard error correction model, the method of decoherence-free subspaces, and the noiseless subsystem method - as special cases, and relies on a generalized mathematical framework for noiseless subsystems that applies to arbitrary quantum operations. We also discuss a number of examples and introduce the notion of unitarily noiseless subsystems.
Resumo:
The one-dimensional Hubbard model is integrable in the sense that it has an infinite family of conserved currents. We explicitly construct a ladder operator which can be used to iteratively generate all of the conserved current operators. This construction is different from that used for Lorentz invariant systems such as the Heisenberg model. The Hubbard model is not Lorentz invariant, due to the separation of spin and charge excitations. The ladder operator is obtained by a very general formalism which is applicable to any model that can be derived from a solution of the Yang-Baxter equation.
Resumo:
This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.
Resumo:
We show that quantum feedback control can be used as a quantum-error-correction process for errors induced by a weak continuous measurement. In particular, when the error model is restricted to one, perfectly measured, error channel per physical qubit, quantum feedback can act to perfectly protect a stabilizer codespace. Using the stabilizer formalism we derive an explicit scheme, involving feedback and an additional constant Hamiltonian, to protect an (n-1)-qubit logical state encoded in n physical qubits. This works for both Poisson (jump) and white-noise (diffusion) measurement processes. Universal quantum computation is also possible in this scheme. As an example, we show that detected-spontaneous emission error correction with a driving Hamiltonian can greatly reduce the amount of redundancy required to protect a state from that which has been previously postulated [e.g., Alber , Phys. Rev. Lett. 86, 4402 (2001)].
Resumo:
This paper presents a method for estimating the posterior probability density of the cointegrating rank of a multivariate error correction model. A second contribution is the careful elicitation of the prior for the cointegrating vectors derived from a prior on the cointegrating space. This prior obtains naturally from treating the cointegrating space as the parameter of interest in inference and overcomes problems previously encountered in Bayesian cointegration analysis. Using this new prior and Laplace approximation, an estimator for the posterior probability of the rank is given. The approach performs well compared with information criteria in Monte Carlo experiments. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a case study that explores how operator digging style juxtaposes with mechanical capability for a class of hydraulic mining excavators. The relationships between actuator and digging forces are developed and these are used to identify the excavator's capability to apply forces in various directions. Two distinct modes of operation are examined to see how they relate to the mechanical capabilities of the linkage and to establish if one has merit over the other. It is found that one of these styles results in lower loading of the machine.
Resumo:
Analysis of a major multi-site epidemiologic study of heart disease has required estimation of the pairwise correlation of several measurements across sub-populations. Because the measurements from each sub-population were subject to sampling variability, the Pearson product moment estimator of these correlations produces biased estimates. This paper proposes a model that takes into account within and between sub-population variation, provides algorithms for obtaining maximum likelihood estimates of these correlations and discusses several approaches for obtaining interval estimates. (C) 1997 by John Wiley & Sons, Ltd.