2 resultados para Open Robot Project

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper illustrates the prediction of opponent behaviour in a competitive, highly dynamic, multi-agent and partially observableenvironment, namely RoboCup small size league robot soccer. The performance is illustrated in the context of the highly successful robot soccer team, the RoboRoos. The project is broken into three tasks; classification of behaviours, modelling and prediction of behaviours and integration of the predictions into the existing planning system. A probabilistic approach is taken to dealing with the uncertainty in the observations and with representing the uncertainty in the prediction of the behaviours. Results are shown for a classification system using a Naïve Bayesian Network that determines the opponent’s current behaviour. These results are compared to an expert designed fuzzy behaviour classification system. The paper illustrates how the modelling system will use the information from behaviour classification to produce probability distributions that model the manner with which the opponents perform their behaviours. These probability distributions are show to match well with the existing multi-agent planning system (MAPS) that forms the core of the RoboRoos system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investment in mining projects, like most business investment, is susceptible to risk and uncertainty. The ability to effectively identify, assess and manage risk may enable strategic investments to be sheltered and operations to perform closer to their potential. In mining, geological uncertainty is seen as the major contributor to not meeting project expectations. The need to assess and manage geological risk for project valuation and decision-making translates to the need to assess and manage risk in any pertinent parameter of open pit design and production scheduling. This is achieved by taking geological uncertainty into account in the mine optimisation process. This thesis develops methods that enable geological uncertainty to be effectively modelled and the resulting risk in long-term production scheduling to be quantified and managed. One of the main accomplishments of this thesis is the development of a new, risk-based method for the optimisation of long-term production scheduling. In addition to maximising economic returns, the new method minimises the risk of deviating from production forecasts, given the understanding of the orebody. This ability represents a major advance in the risk management of open pit mining.