92 resultados para Offspring Fitness
em University of Queensland eSpace - Australia
Resumo:
In many species, females display preferences for extreme male signal traits, but it has not been determined if such preferences evolve as a consequence of females gaining genetic benefits from exercising choice. If females prefer extreme male traits because they indicate male genetic quality that will enhance the fitness of offspring, a genetic correlation will evolve between female preference genes and genes that confer offspring fitness. We show that females of Drosophila serrata prefer extreme male cuticular hydrocarbon (CHC) blends, and that this preference affects offspring fitness. Female preference is positively genetically correlated with offspring fitness, indicating that females have gained genetic benefits from their choice of males. Despite male CHCs experiencing strong sexual selection, the genes underlying attractive CHCs also conferred lower offspring fitness, suggesting a balance between sexual selection and natural selection may have been reached in this population.
Resumo:
The positive relationship between offspring size and offspring fitness is a fundamental assumption of life-history theory, but it has received relatively little attention in the marine environment. This is surprising given that substantial intraspecific variation in offspring size is common in marine organisms and there are clear links between larval experience and adult performance. The metamorphosis of most marine invertebrates does not represent a newbeginning, and larval experiences can have effects that carry over to juvenile survival and growth. We show that larval size can have equally important carryover effects in a colonial marine invertebrate. In the bryozoan Bugula neritina, the size of the non-feeding larvae has a prolonged effect on colony performance after metamorphosis. Colonies that came from larger larvae survived better, grew faster, and reproduced sooner or produced more embryos than colonies that came from smaller larvae. These effects crossed generations, with colonies from larger larvae themselves producing larger larvae. These effects were found in two populations (in Australia and in the United States) in contrasting habitats.
Resumo:
Offspring size is thought to strongly affect offspring fitness and many studies have shown strong offspring size/fitness relationships in marine and terrestrial organisms. This relationship is strongly mitigated by local environmental conditions and the optimal offspring size that mothers should produce will vary among different environments. It is assumed that offspring size will consistently affect the same traits among populations but this assumption has not been tested. Here I use a common garden experiment to examine the effects of offspring size on subsequent performance for the marine bryozoan Bugula neritina using larvae from two very different populations. The local conditions at one population (Williamstown) favour early reproduction whereas the other population (Pt. Wilson) favours early growth. Despite being placed in the same habitat, the effects of parental larval size were extremely variable and crossed generations. For larvae from Williamstown, parental larval size positively affected initial colony growth and larval size in the next generation. For larvae from the other population, parental larval size positively affected colony fecundity and negatively affected larval size in the next generation. Traditionally, exogenous factors have been viewed as the sole source of variation in offspring size/fitness relationship but these results show that endogenous factors (maternal source population) can also cause variation in this crucial relationship. It appears offspring size effects can be highly variable among populations and organisms can adapt to local conditions without changing the size of their offspring.
Resumo:
We investigated the oviposition preference and larval performance of Helicoverpa armigera under laboratory conditions to determine if the oviposition preference of individual females on maize, cowpea and cotton correlates with offspring performance on the leaves of the same host plants. The host-plant preference hierarchy of females did not correlate with their offspring performance. Female moths chose host plants that contributed less to their offspring fitness. Plant effects accounted for the largest amount of variation in offspring performance, while the effects of female (family) was low. The offspring of most females (80%, n = 10) were broadly similar, but 20% (two out of 10), showed marked difference in their offspring performance across the host-plant species. Similarly, there was no relation between larval feeding preference and performance. However, like most laboratory experiments, our experi-mental design does not allow the evaluation of ecological factors (for example, natural enemies, host abundance, etc.) that can play an important role in larval performance in the field. Overall, the results highlight the importance of carrying out preference performance analysis on the individual or family level, rather than pooling individuals to obtain average population data.
Resumo:
Variation in larval size has been shown to be an important factor for the post-metamorphic performance of marine invertebrates but, despite its importance, few sources of this variation have been identified. For a range of taxa, offspring size is positively correlated with maternal size but the reasons for this correlation remain unclear. We halved the size of colonies in the bryozoan Bugula neritina 1 wk prior to reproduction (but during embryogenesis) to determine if larval size is a fixed or plastic trait. We manipulated colonies in such a way that the ratio of feeding zooids to reproductive zooids was constant between treatment and control colonies. We found that manipulating colony size strongly affects larval size; halved colonies produced larvae that were similar to13% smaller than those produced by intact colonies. We entered these data into a simple model based on previous work to estimate the likely post-metamorphic consequences of this reduction in larval size. The model predicted that larvae that came from manipulated colonies would suffer similar to300% higher post-metamorphic mortality and similar to50% lower fecundity as adults. Colonies that are faced with a stress appear to be trading off current offspring fitness to maximize their own long-term fitness and this may explain previous observations of compensatory growth in colonial organisms. This study demonstrates that larval size is a surprisingly dynamic trait and strong links exist between the maternal phenotype and the fitness of the offspring. The performance of settling larvae may be determined not only by their larval experience but also by the experience of their mothers.
Resumo:
There is concern that the commercial harvest of kangaroos (Macropus spp.) is affecting species fitness and evolutionary potential because the harvest selects for larger individuals, particularly males. This paper reviews the likely effect of selective harvesting on specific traits associated with fitness, including size, and on adaptive genotypes through generalised loss of gene diversity. Heritability for traits associated with fitness is low generally. The intensity of selection imposed by harvesting is low for several reasons: the geographic size of genetic populations is much larger than the harvest localities, which are therefore not closed but open with immigration acting to correct any change in allele frequencies through harvesting; the harvest targets kangaroos above a threshold weight that includes all adult males, not the largest males specifically; larger, older males may not confer significant fitness benefits on offspring; fitness traits are inherited through both sexes while males are targeted predominantly; populations are not at a selective equilibrium because food availability fluctuates, and the fittest is unlikely to be the largest. Comparisons of harvested and unharvested populations do not show any loss of gene diversity as a result of harvesting. The likelihood of a long-term genetic impact of kangaroo harvesting as currently practiced is negligible.
Resumo:
The net effect of sexual selection on nonsexual fitness is controversial. On one side, elaborate display traits and preferences for them can be costly, reducing the nonsexual fitness of individuals possessing them, as well as their offspring, In contrast, sexual selection may reinforce nonsexual fitness if an individual's attractiveness and quality are genetically correlated. According to recent models, such good-genes mate choice should increase both the extent and rate of adaptation. We evolved 12 replicate populations of Drosophila serrata in a powerful two-way factorial experimental design to test the separate and combined contributions of natural and sexual selection to adaptation to a novel larval food resource. Populations evolving in the presence of natural selection had significantly higher mean nonsexual fitness when measured over three generations (13-15) during the course of experimental evolution (16-23% increase). The effect of natural selection was even more substantial when measured in a standardized, monogamous mating environment at the end of the experiment (generation 16; 52% increase). In contrast, and despite strong sexual selection on display traits, there was no evidence from any of the four replicate fitness measures that sexual selection promoted adaptation. In addition, a comparison of fitness measures conducted under different mating environments demonstrated a significant direct cost of sexual selection to females, likely arising from some form of male-induced harm. Indirect benefits of sexual selection in promoting adaptation to this novel resource environment therefore appear to be absent in this species, despite prior evidence suggesting the operation of good-genes mate choice in their ancestral environment. How novel environments affect the operation of good-genes mate choice is a fundamental question for future sexual selection research.
Resumo:
Over the past 30 years, numerous attempts to understand the relationship between offspring size and fitness have been made, and it has become clear that this critical relationship is strongly affected by environmental heterogeneity. For marine invertebrates, there has been a long-standing interest in the evolution of offspring size, but there have been very few empirical and theoretical examinations of post-metamorphic offspring size effects, and almost none have considered the effect of environmental heterogeneity on the offspring size/fitness relationship. We investigated the post-metamorphic effects of offspring size in the field for the colonial marine invertebrate Botrylloides violaceus. We also examined how the relationship between offspring size and performance was affected by three different types of intraspecific competition. We found strong and persistent effects of offspring size on survival and growth, but these effects depended on the level and type of intraspecific competition.. Generally, competition strengthened the advantages of increasing maternal investment. Interestingly, we found that offspring size determined the outcome of competitive interaction: juveniles that had more maternal investment were more likely to encroach on another juvenile's territory. This suggests that mothers have the previously unrecognized potential to influence the outcome of competitive interactions in benthic marine invertebrates. We created a simple optimality model, which utilized the data generated from our field experiments, and found that increasing intraspecific competition resulted in an increase,in predicted optimal size. Our results suggest that the relationship between offspring size and fitness is highly variable in the marine environment and strongly dependent on the density of conspecifics.
Resumo:
The aim of this study was to examine the reliability and validity of field tests for assessing physical function in mid-aged and young-old people (55–70 y). Tests were selected that required minimal space and equipment and could be implemented in multiple field settings such as a general practitioner's office. Nineteen participants completed 2 field and 1 laboratory testing sessions. Intra-class correlations showed good reliability for the tests of upper body strength (lift and reach, R= .66), lower body strength (sit to stand, R= .80) and functional capacity (Canadian Step Test, R= .92), but not for leg power (single timed chair rise, R= .28). There was also good reliability for the balance test during 3 stances: parallel (94.7% agreement), semi-tandem (73.7%), and tandem (52.6%). Comparison of field test results with objective laboratory measures found good validity for the sit to stand (cf 1RM leg press, Pearson r= .68, p< .05), and for the step test (cf PWC140, r= −.60, p< .001), but not for the lift and reach (cf 1RM bench press, r= .43, p> .05), balance (r= −.13, −.18, .23) and rate of force development tests (r= −.28). It was concluded that the lower body strength and cardiovascular function tests were appropriate for use in field settings with mid-aged and young-old adults.
Resumo:
Introduction: This paper reviews studies of physical activity interventions in health care settings to determine effects on physical activity and/or fitness and characteristics of successful interventions. Methods: Studies testing interventions to promote physical activity in health care settings for primary prevention (patients without disease) and secondary prevention (patients with cardiovascular disease [CVD]) were identified by computerized search methods and reference lists of reviews and articles. Inclusion criteria included assignment to intervention and control groups, physical activity or cardiorespiratory fitness outcome measures, and, for the secondary prevention studies, measurement 12 or more months after randomization. The number of studies with statistically significant effects was determined overall as well as for studies testing interventions with various characteristics. Results: Twelve studies of primary prevention were identified, seven of which were randomized. Three of four randomized studies with short-term measurement (4 weeks to 3 months after randomization), and two of five randomized studies with long-term measurement (6 months after randomization) achieved significant effects on physical activity. Twenty-four randomized studies of CVD secondary prevention were identified; 13 achieved significant effects on activity and/or fitness at twelve or more months. Studies with measurement at two time points showed decaying effects over time, particularly if the intervention were discontinued. Successful interventions contained multiple contacts, behavioral approaches, supervised exercise, provision of equipment, and/or continuing intervention. Many studies had methodologic problems such as low follow-up rates. Conclusion: Interventions in health care settings can increase physical activity for both primary and secondary prevention. Long-term effects are more likely with continuing intervention and multiple intervention components such as supervised exercise, provision of equipment, and behavioral approaches. Recommendations for additional research are given.
Resumo:
To help improve services for parents with psychotic disorders, patients with such disorders in three treatment agencies in Queensland, Australia, were surveyed about whether they were parents, how much contact they had with their offspring, and who provided assistance with child care. Of the 342 individuals with psychotic disorders mho participated in the study, 124 were parents. Forty-eight parents in the study had children under age 16, and 20 of these parents (42 percent) had their children living with them. Most parents relied on relatives or friends for assistance with child care. Barriers to child care services identified by parents were inability to pay, lack of local services, and fear of losing custody of children.
Resumo:
Increasing evidence from human epidemiological studies suggests that poor growth before birth is associated with postnatal growth retardation and the development of cardiovascular disease in adulthood. We have shown previously that nutritional deprivation in the pregnant rat leads to intrauterine growth retardation (IUGR), postnatal growth failure, changes in the endocrine parameters of the somatotrophic axis, and to increased blood pressure in later life. In the present study, we investigated whether administration of insulin-like growth factor-I (IGF-I) or bovine growth hormone (GH) during pregnancy could prevent IUGR and/or alter long-term outcome. Dams h-om day 1 of pregnancy throughout gestation received a diet of nd libitum available food or a restricted dietary intake of 30% of ad libitum fed dams. From day 10 of gestation, dams were treated for 10 days with three times daily subcutaneous injections of saline (100 mu l), IGF-I (2 mu g/g body weight) or GH (2 mu g/g body weight). Maternal weight gain was significantly increased (P
Resumo:
The provisioning of offspring can have far-reaching consequences for later life in a wide range of organisms and generally this provisioning is thought to be under maternal influence or control. In experiments with a broadcast-spawning ascidian, we found that the size of offspring was determined by egg size and the abundance of sperm present during fertilization. Larger eggs were fertilized at low sperm concentrations, whilst smaller eggs were successfully fertilized at high sperm concentrations. These differences in fertilized egg size resulted in differences in the development rate, hatching success and mean size of the subsequent larvae. Our results suggest that, in contrast to females that reproduce by other mating systems, free-spawning mothers lack some control over the provisioning of offspring. Furthermore, because males can alter the sperm environment, they can exert paternal (non-genetic) control over key offspring characteristics.