24 resultados para Number average molecular weight

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the successful RAFT-mediated emulsion polymerization of styrene using a non-ionic surfactant (Brij98), the highly reactive 1-phenylethyl phenyldithioacetate (PEPDTA) RAFT agent, and water-soluble initiator ammonium persulfate (APS). The molar ratio of RAFT agent to APS was identical in all experiments. Most of the monomer was contained within the micelles, analogous to microemulsion or miniemulsion systems but without the need of shear, sonication, cosurfactant, or a hydrophobe. The number-average molecular weight increased with conversion and the polydispersity index was below 1.2. This ideal 'living' behavior was only found when molecular weights of 9000 and below were targeted. It was postulated that the rapid transportation of RAFT agent from the monomer swollen micelles to the growing particles was fast on the polymerization timescale, and most if not all the RAFT agent is consumed within the first 10% conversion. In addition, it was postulated that the high nucleation rate from the high rate of exit ( of the R radical from the RAFT agent) and high entry rate from water-phase radicals ( high APS concentration) reduced the effects of 'superswelling' and therefore a similar molar ratio of RAFT agent to monomer was maintained in all growing particles. The high polydispersity indexes found when targeting molecular weights greater than 9000 were postulated to be due to the lower nucleation rate from the lower weight fractions of both APS and RAFT agent. In these cases, 'superswelling' played a dominant role leading to a heterogeneous distribution of RAFT to monomer ratios among the particles nucleated at different times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low nephron number has been related to low birth weight and hypertension. In the southeastern United States, the estimated prevalence of chronic kidney disease due to hypertension is five times greater for African Americans than white subjects. This study investigates the relationships between total glomerular number (N-glom), blood pressure, and birth weight in southeastern African Americans and white subjects. Stereological estimates of N-glom were obtained using the physical disector/fractionator technique on autopsy kidneys from 62 African American and 60 white subjects 30-65 years of age. By medical history and recorded blood pressures, 41 African Americans, and 24 white subjects were identified as hypertensive and 21 African Americans and 36 white subjects as normotensive. Mean arterial blood pressure ( MAP) was obtained on 81 and birth weights on 63 subjects. For African Americans, relationships between MAP, N-glom, and birth weight were not significant. For white subjects, they were as follows: MAP and N-glom ( r = -0.4551, P = 0.0047); Nglom and birth weight ( r = 0.5730, P = 0.0022); MAP and birth weight ( r = -0.4228, P = 0.0377). For African Americans, average N-glom of 961 840 +/- 292 750 for normotensive and 867 358 +/- 341 958 for hypertensive patients were not significantly different ( P = 0.285). For white subjects, average N-glom of 923 377 +/- 256 391 for normotensive and 754 319 +/- 329 506 for hypertensive patients were significantly different ( P = 0.03). The data indicate that low nephron number and possibly low birth weight may play a role in the development of hypertension in white subjects but not African Americans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Block copolymers have become an integral part of the preparation of complex architectures through self-assembly. The use of reversible addition-fragmentation chain transfer (RAFT) allows blocks ranging from functional to nonfunctional polymers to be made with predictable molecular weight distributions. This article models block formation by varying many of the kinetic parameters. The simulations provide insight into the overall polydispersities (PDIs) that will be obtained when the chain-transfer constants in the main equilibrium steps are varied from 100 to 0.5. When the first dormant block [polymer-S-C(Z)=S] has a PDI of 1 and the second propagating radical has a low reactivity to the RAFT moiety, the overall PDI will be greater than 1 and dependent on the weight fraction of each block. When the first block has a PDI of 2 and the second propagating radical has a low reactivity to the RAFT moiety, the PDI will decrease to around 1.5 because of random coupling of two broad distributions. It is also shown how we can in principle use only one RAFT agent to obtain block copolymers with any desired molecular weight distribution. We can accomplish this by maintaining the monomer concentration at a constant level in the reactor over the course of the reaction. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Living radical polymerization has allowed complex polymer architectures to be synthesized in bulk, solution, and water. The most versatile of these techniques is reversible addition-fragmentation chain transfer (RAFT), which allows a wide range of functional and nonfunctional polymers to be made with predictable molecular weight distributions (MWDs), ranging from very narrow to quite broad. The great complexity of the RAFT mechanism and how the kinetic parameters affect the rate of polymerization and MWD are not obvious. Therefore, the aim of this article is to provide useful insights into the important kinetic parameters that control the rate of polymerization and the evolution of the MWD with conversion. We discuss how a change in the chain-transfer constant can affect the evolution of the MWD. It is shown how we can, in principle, use only one RAFT agent to obtain a poly-mer with any MWD. Retardation and inhibition are discussed in terms of (1) the leaving R group reactivity and (2) the intermediate radical termination model versus the slow fragmentation model. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work has demonstrated that for the first time a single RAFT agent (i. e., difunctional) can be used in conjunction with a radical initiator to obtain a desired M-n and PDI with controlled rates of polymerization. Simulations were used not only to verify the model but also to provide us with a predictive tool to generate other MWDs. It was also shown that all the MWDs prepared in this work could be translated to higher molecular weights through chain extension experiments with little or no compromise in the control of end group functionality. The ratio of monofunctional to difunctional SdC(CH2Ph)S- end groups, XPX and XP (where X) S=C(CH2Ph) S-), can be controlled by simply changing the concentration of initiator, AIBN. Importantly, the amount of dead polymer is extremely low and fulfils the criterion as suggested by Szwarc (Nature 1956) that to meet living requirements nonfunctional polymeric species formed by side reactions in the process should be undetectable by analytical techniques. In addition, this novel methodology will allow the synthesis of AB, ABA, and statistical multiblock copolymers with predetermined ratios to be produced in a one-pot reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two polycationic lipophilic-core carbohydrate-based dendrons 2a-b and five polycationic lipophilic-core peptide dendrons 3-6, containing four arginine or lysine terminal residues, were synthesized and then tested in rats as penetration enhancers for the oral delivery of low molecular weight heparin. Better results were obtained with dendrons containing terminal lysine residues than terminal arginine. A significant anti-factor Xa activity was obtained when low molecular weight heparin was coadministered with dendron 5. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of schizophrenia with olanzapine and other atypical antipsychotic agents is associated with insulin resistance and diabetes mellitus. The mechanism for this is not understood. Adiponectin is an insulin-sensitizing cytokine secreted by adipocytes. It is present in serum in multimers of varying size. Trimers and hexamers are referred to as low molecular weight (LMW) adiponectin. Larger multimers (12-, 18-, and 24-mers) have been designated high molecular weight (HMW) adiponectin and seem responsible for the insulin-sensitizing action of this adipokine. The aim of this study was to examine total adiponectin and LMW and HMW multimers in serum from patients with schizophrenia treated with either olanzapine (n = 9) or other typical antipsychotics (n = 9) and compare results with 16 healthy sex-, body mass index-, and age-matched controls. The effects of olanzapine on adiponectin protein expression and secretion in in vitro-differentiated primary human adipocytes were also examined. Patients receiving olanzapine had significantly lower total serum adiponectin as compared with those on conventional treatment and controls (5.23 +/- 1.53 ng/mL vs. 8.20 +/- 3.77 ng/mL and 8.78 +/- 3.8 ng/mL; P < 0.05 and P < 0.01, respectively). The HMW adiponectin was also reduced in patients on olanzapine as compared with the disease and healthy control groups (1.67 +/- 0.96 ng/mL vs. 3.87 +/- 2.69 ng/mL and 4.07 +/- 3.2 ng/mL; P < 0.05 for both). The LMW adiponectin was not different between patient groups (P = 0.15) but lower in patients on olanzapine as compared with controls (3.56 +/- 10.85 ng/mL vs. 4.70 +/- 1.4 ng/mL; P < 0.05). In vitro, short duration (up to 7 days) olanzapine exposure had no effect on total adiponectin expression or multimer composition of secreted protein. In summary, this study demonstrates a correlation between olanzapine treatment and reduced serum adiponectin, particularly HMW multimers. This may not be a direct effect of olanzapine on adipocyte expression or secretion of adiponectin. These observations provide insights into possible mechanisms for the association between olanzapine treatment and insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach to the pinch region, the viscoelastic fluids all exhibit the same global necking behavior that is observed for a Newtonian fluid of equivalent shear viscosity. For these low viscosity dilute polymer solutions, inertial and capillary forces form the dominant balance in this potential flow regime, with the viscous force being negligible. The approach to the pinch point, which corresponds to the point of rupture for a Newtonian fluid, is extremely rapid in such solutions, with the sudden increase in curvature producing very large extension rates at this location. In this region the polymer molecules are significantly extended, causing a localized increase in the elastic stresses, which grow to balance the capillary pressure. This prevents the necked fluid from breaking off, as would occur in the equivalent Newtonian fluid. Alternatively, a cylindrical filament forms in which elastic stresses and capillary pressure balance, and the radius decreases exponentially with time. A (0+1)-dimensional finitely extensible nonlinear elastic dumbbell theory incorporating inertial, capillary, and elastic stresses is able to capture the basic features of the experimental observations. Before the critical "pinch time" t(p), an inertial-capillary balance leads to the expected 2/3-power scaling of the minimum radius with time: R-min similar to(t(p)-t)(2/3). However, the diverging deformation rate results in large molecular deformations and rapid crossover to an elastocapillary balance for times t>t(p). In this region, the filament radius decreases exponentially with time R-min similar to exp[(t(p)-t)/lambda(1)], where lambda(1) is the characteristic time constant of the polymer molecules. Measurements of the relaxation times of polyethylene oxide solutions of varying concentrations and molecular weights obtained from high speed imaging of the rate of change of filament radius are significantly higher than the relaxation times estimated from Rouse-Zimm theory, even though the solutions are within the dilute concentration region as determined using intrinsic viscosity measurements. The effective relaxation times exhibit the expected scaling with molecular weight but with an additional dependence on the concentration of the polymer in solution. This is consistent with the expectation that the polymer molecules are in fact highly extended during the approach to the pinch region (i.e., prior to the elastocapillary filament thinning regime) and subsequently as the filament is formed they are further extended by filament stretching at a constant rate until full extension of the polymer coil is achieved. In this highly extended state, intermolecular interactions become significant, producing relaxation times far above theoretical predictions for dilute polymer solutions under equilibrium conditions. (C) 2006 American Institute of Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small-angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress-strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. (c) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) is a high molecular weight, protein (similar to350 kDa) containing a C-terminal protein kinase domain and a number of other putative domains not yet functionally defined. The majority of ATM gene mutations in A-T patients are truncating, resulting in prematurely terminated products that are highly unstable. Missense mutations within the kinase domain and elsewhere in the molecule alter the stability of the protein and lead to loss of protein kinase activity. Only rarely are patients observed with two missense mutations and this gives rise to a milder disease phenotype. Evidence for a dominant interfering effect on normal ATM kinase activity has been reported in cell lines transfected with missense mutant ATM and in cell lines from some A-T heterozygotes. The dominant negative effect of mutant ATM is manifested by an enhancement of cellular radiosensitivity and may be responsible for the cancer predisposition observed in carriers of ATM missense mutations. In this review, we explore the domain structure of the ATM molecule, sites of interaction with other proteins and the consequences of specific amino acid changes on function. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most important determinants of dermatological and systemic penetration after topical application is the delivery or flux of solutes into or through the skin. The maximum dose of solute able to be delivered over a given period of time and area of application is defined by its maximum flux (J(max), mol per cm(2) per h) from a given vehicle. In this work, J(max) values from aqueous solution across human skin were acquired or estimated from experimental data and correlated with solute physicochemical properties. Whereas epidermal permeability coefficients (k(p)) are optimally correlated to solute octanol-water partition coefficient (K-ow) and molecular weight (MW) was found to be the dominant determinant of J(max) for this literature data set: log J(max)=-3.90-0.0190MW (n=87, r(2)=0.847, p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complexation of cadmium(II) by the ditopic (bis-tridentate) thiocarbazone ligand 1,5-bis(6-methyl-2-pyridylmethylene) thiocarbonohydrazide, H2L1, results in the self-assembly of a charge-neutral 2 x 2 molecular grid, [Cd-4(L-1)(4)], comprising four metals and four ligands in an interlocked cyclic array. The solid-state structure of this tetramer has been established by X-ray crystallography and in solution by H-1 NMR spectroscopy. The presence of lower molecular weight oligomers was identified by both NMR and ESI-MS.