35 resultados para Nonlinear integral equations.
em University of Queensland eSpace - Australia
Resumo:
in this paper we investigate the solvability of the Neumann problem (1.1) involving the critical Sobolev exponents on the right-hand side of the equation and in the boundary condition. It is assumed that the coefficients Q and P are smooth. We examine the common effect of the mean curvature of the boundary a deltaOhm and the shape of the graph of the coefficients Q and P on the existence of solutions of problem (1.1). (C) 2003 Published by Elsevier Inc.
Resumo:
We establish maximum principles for second order difference equations and apply them to obtain uniqueness for solutions of some boundary value problems.
Resumo:
In this paper, we are concerned with determining values of lambda, for which there exist positive solutions of the nonlinear eigenvalue problem [GRAPHICS] where a, b, c, d is an element of [0, infinity), xi(i) is an element of (0, 1), alpha(i), beta(i) is an element of [0 infinity) (for i is an element of {1, ..., m - 2}) are given constants, p, q is an element of C ([0, 1], (0, infinity)), h is an element of C ([0, 1], [0, infinity)), and f is an element of C ([0, infinity), [0, infinity)) satisfying some suitable conditions. Our proofs are based on Guo-Krasnoselskii fixed point theorem. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We investigate the structure of the positive solution set for nonlinear three-point boundary value problems of the form u('') + h(t) f(u) = 0, u(0) = 0, u(1) = lambdau(eta), where eta epsilon (0, 1) is given lambda epsilon (0, 1/n) is a parameter, f epsilon C ([0, infinity), [0, infinity)) satisfies f (s) > 0 for s > 0, and h epsilon C([0, 1], [0, infinity)) is not identically zero on any subinterval of [0, 1]. Our main results demonstrate the existence of continua of positive solutions of the above problem. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We consider the boundary value problems for nonlinear second-order differential equations of the form u '' + a(t)f (u) = 0, 0 < t < 1, u(0) = u (1) = 0. We give conditions on the ratio f (s)/s at infinity and zero that guarantee the existence of solutions with prescribed nodal properties. Then we establish existence and multiplicity results for nodal solutions to the problem. The proofs of our main results are based upon bifurcation techniques. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We consider boundary value problems for nonlinear second order differential equations of the form u + a(t) f(u) = 0, t epsilon (0, 1), u(0) = u(1) = 0, where a epsilon C([0, 1], (0, infinity)) and f : R --> R is continuous and satisfies f (s)s > 0 for s not equal 0. We establish existence and multiplicity results for nodal solutions to the problems if either f(0) = 0, f(infinity) = infinity or f(0) = infinity, f(0) = 0, where f (s)/s approaches f(0) and f(infinity) as s approaches 0 and infinity, respectively. We use bifurcation techniques to prove our main results. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
We present existence results for a Neumann problem involving critical Sobolev nonlinearities both on the right hand side of the equation and at the boundary condition.. Positive solutions are obtained through constrained minimization on the Nehari manifold. Our approach is based on the concentration 'compactness principle of P. L. Lions and M. Struwe.
Resumo:
For a parameter, we consider the modified relaxed energy of the liquid crystal system. Each minimizer of the modified relaxed energy is a weak solution to the liquid crystal equilibrium system. We prove the partial regularity of minimizers of the modified relaxed energy. We also prove the existence of infinitely many weak solutions for the special boundary value x.
Resumo:
We discuss the partial regularity of minimizers of energy functionals such as (1)/(p)integral(Omega)[sigma(u)dA(p) + (1)/(2)delu(2p)]dx, where u is a map from a domain Omega is an element of R-n into the m-dimensional unit sphere of Rm+1 and A is a differential one-form in Omega.