5 resultados para Net rate of heat release
em University of Queensland eSpace - Australia
Resumo:
Borecore samples from the Trap Gully pit at Callide have been assessed using the R-70 self-heating test. The highest R-70 self-heating rate value was 16.22 degrees C/h, which is consistent with the subbituminous rank of the coal. R-70 decreases significantly with increasing mineral matter content, as defined by the ash content of the coal. This effect is due to the mineral matter in the coal acting as a heat sink. A trendline equation has been fitted to the borecore data from the Trap Gully pit: R-70 = 0.0029 x ash(2) - 0.4889 x ash + 20.644, where all parameters are on a dry-basis. This relationship can be used to model the self-heating hazard of the pit, both vertically and laterally. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Strip samples from the Boundary Hill pit at Callide have been tested in an adiabatic oven to assess the effect of moisture on the R-70 self-heating rate of coal. The two strip samples tested had R-70 self-heating rate values of 10.23 and 8.61 degrees C/h. As the moisture content of the coal was progressively increased, from the dry state of the test, the R-70 value decreased dramatically. At approximately 40-50% of the moisture holding capacity of the coal, the self-heating rate becomes measurable. Above this critical level of moisture content, the heat produced by oxidation is dissipated by moisture evaporation and coal self-heating is significantly delayed. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
In this study tetraploid Marsupenaeus japonicus (Bate) embryos were produced by preventing the first division in mitosis. The effectiveness of temperature and chemical shocks for producing tetraploid M. japonicus were assessed when applied at different times postspawning and for different durations. Tetraploid M. japonicus embryos (spawned at 27 degrees C) were produced by heat shocks at 35 degrees C and 36 degrees C in three and eight spawning samples respectively, and a cold shock at 5 degrees C in a single spawning sample. All temperature shocks inducing tetraploidy were applied 18-23 min postspawning for a 5-10 min duration. The percentage of spawnings successfully inducing tetraploid embryos (i.e., frequency of induction) ranged from 33.33% to 66.67% for the 21, 22 and 23 min postspawning heat shock treatment regimes. The percentage of tetraploid embryos within an induction (i.e., induction rate), as determined by flow cytometry, ranged from 8.82% to 98.12% (ave. S.E.) (34.4 +/- 21.4%) for the 35 degrees C shock treatments, from 13.12% to 61.02% (35.0 +/- 5.0%) for the 36 degrees C shock treatments and was 15% for the 5 degrees C cold shock treatment. No tetraploids were produced for spawnings that received heat shocks above 36 degrees C or below 35 degrees C, or for cold shocks above 5 degrees C for any of the tested postspawning treatment and duration times. Chemical shock with 150 mu M 6-dimethylaminopurine did not result in tetraploid M. japonicus embryos at any of the tested postspawning treatment times and durations. Tetraploid M. japonicus embryos were nonviable, with no tetraploid larvae being detected by flow cytometry. Based on our results heat shocking of M. japonicus embryos at 36 degrees C, 23 min postspawning for a 5-10 min duration is the most effective means to produce tetraploids through inhibition of the first mitotic division (taking into consideration the importance of frequency and induction rate equally).
Resumo:
Objective To investigate the extent of heat load problems, caused by the combination of excessive temperature and humidity, in Holstein-Friesian cows in Australia. Also, to outline how milk production losses and consequent costs from this can be estimated and minimised. Procedures Long-term meteorological data for Australia were analysed to determine the distribution of hot conditions over space and time. Fifteen dairy production regions were identified for higher-resolution data analysis. Both the raw meteorological data and their integration into a temperature-humidity thermal index were compiled onto a computer program. This mapping software displays the distribution of climatic patterns, both Australia-wide and within the selected dairying regions. Graphical displays of the variation in historical records for 200 locations in the 15 dairying regions are also available. As a separate study, production data from research stations, on-farm trials and milk factory records were statistically analysed and correlated with the climatic indices, to estimate production losses due to hot conditions. Results Both milk yields and milk constituents declined with increases in the temperature-humidity index. The onset and rate of this decline are dependent on a number of factors, including location, level of production, adaptation, and management regime. These results have been integrated into a farm-level economic analysis for managers of dairy properties. Conclusion By considering the historical patterns of hot conditions over time and space, along with expected production losses, managers of dairy farms can now conduct an economic evaluation of investment strategies to alleviate heat loads. These strategies include the provision of sprinklers, shade structures, or combinations of these.