365 resultados para Molecular physics

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The concept of entanglement in systems where the particles are indistinguishable has been the subject of much recent interest and controversy. In this paper we study the notion of entanglement of particles introduced by Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] in several specific physical systems, including some that occur in condensed-matter physics. The entanglement of particles is relevant when the identical particles are itinerant and so not distinguished by their position as in spin models. We show that entanglement of particles can behave differently than other approaches that have been used previously, such as entanglement of modes (occupation-number entanglement) and the entanglement in the two-spin reduced density matrix. We argue that the entanglement of particles is what could actually be measured in most experimental scenarios and thus its physical significance is clear. This suggests that entanglement of particles may be useful in connecting theoretical and experimental studies of entanglement in condensed-matter systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analyze molecular bound states of atomic quantum gases near a Feshbach resonance. A simple, renormalizable field theoretic model is shown to have exact solutions in the two-body sector, whose binding energy agrees well with observed experimental results in both Bosonic and Fermionic cases. These solutions, which interpolate between BEC and BCS theories, also provide a more general variational ansatz for resonant superfluidity and related problems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a theoretical analysis of three-dimensional (3D) matter-wave solitons and their stability properties in coupled atomic and molecular Bose-Einstein condensates (BECs). The soliton solutions to the mean-field equations are obtained in an approximate analytical form by means of a variational approach. We investigate soliton stability within the parameter space described by the atom-molecule conversion coupling, the atom-atom s-wave scattering, and the bare formation energy of the molecular species. In terms of ordinary optics, this is analogous to the process of sub- or second-harmonic generation in a quadratic nonlinear medium modified by a cubic nonlinearity, together with a phase mismatch term between the fields. While the possibility of formation of multidimensional spatiotemporal solitons in pure quadratic media has been theoretically demonstrated previously, here we extend this prediction to matter-wave interactions in BEC systems where higher-order nonlinear processes due to interparticle collisions are unavoidable and may not be neglected. The stability of the solitons predicted for repulsive atom-atom interactions is investigated by direct numerical simulations of the equations of motion in a full 3D lattice. Our analysis also leads to a possible technique for demonstrating the ground state of the Schrodinger-Newton and related equations that describe Bose-Einstein condensates with nonlocal interparticle forces.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent experimental measurements of atomic intensity correlations through atom shot noise suggest that atomic quadrature phase correlations may soon be measured with a similar precision. We propose a test of local realism with mesoscopic numbers of massive particles based on such measurements. Using dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic atoms, we demonstrate that strongly entangled atomic beams may be produced which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures in direct analogy to the position and momentum correlations originally considered by EPR.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose a scheme for parametric amplification and phase conjugation of an atomic Bose-Einstein condensate (BEC) via stimulated dissociation of a BEC of molecular dimers consisting of bosonic atoms. This can potentially be realized via coherent Raman transitions or using a magnetic Feshbach resonance. We show that the interaction of a small incoming atomic BEC with a (stationary) molecular BEC can produce two counterpropagating atomic beams - an amplified atomic BEC and its phase-conjugate or "time-reversed" replica. The two beams can possess strong quantum correlation in the relative particle number, with squeezed number-difference fluctuations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on a quantitative study of the growth process of 87Rb Bose-Einstein condensates. By continuous evaporative cooling we directly control the thermal cloud from which the condensate grows. We compare the experimental data with the results of a theoretical model based on quantum kinetic theory. We find quantitative agreement with theory for the situation of strong cooling, whereas in the weak cooling regime a distinctly different behavior is found in the experiment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel three-axis gradient set and RF resonator for orthopedic MRT has been designed and constructed. The set is openable and may be wrapped around injured joints. The design methodology used was the minimization of magnetic field spherical harmonics by simulated annealing. Splitting of the longitudinal coil presents the major design challenge to a fully openable gradient set and in order to efficiently design such coils, we have developed a new fast algorithm for determining the magnetic field spherical harmonics generated by an are of multiturn wire. The algorithm allows a realistic impression of the effect of split longitudinal designs. A prototype set was constructed based on the new designs and tested in a 2-T clinical research system. The set generated 12 mT/m/A with a linear region of 12 cm and a switching time of 100 mu s, conforming closely with theoretical predictions. Preliminary images from the set are presented. (C) 1999 Academic Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a single optical photon source for quantum cryptography based on the acoustoelectric effect. Surface acoustic waves (SAWs) propagating through a quasi-one-dimensional channel have been shown to produce packets of electrons that reside in the SAW minima and travel at the velocity of sound. In our scheme, the electron packets are injected into a p-type region, resulting in photon emission. Since the number of electrons in each packet can be controlled down to a single electron, a stream of single- (or N-) photon states, with a creation time strongly correlated with the driving acoustic field, should be generated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We calculate the density profiles and density correlation functions of the one-dimensional Bose gas in a harmonic trap, using the exact finite-temperature solutions for the uniform case, and applying a local density approximation. The results are valid for a trapping potential that is slowly varying relative to a correlation length. They allow a direct experimental test of the transition from the weak-coupling Gross-Pitaevskii regime to the strong-coupling, fermionic Tonks-Girardeau regime. We also calculate the average two-particle correlation which characterizes the bulk properties of the sample, and find that it can be well approximated by the value of the local pair correlation in the trap center.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We establish a connection between the simple harmonic oscillator and a two-level atom interacting with resonant, quantized cavity and strong driving fields, which suggests an experiment to measure the harmonic-oscillator's probability distribution function. To achieve this, we calculate the Autler-Townes spectrum by coupling the system to a third level. We find that there are two different regions of the atomic dynamics depending on the ratio of the: Rabi frequency Omega (c) of the cavity field to that of the Rabi frequency Omega of the driving field. For Omega (c)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the fluorescence spectrum of a two-level atom driven by a multiple amplitude-modulated field. The driving held is modeled as a polychromatic field composed of a strong central (resonant) component and a large number of symmetrically detuned sideband fields displaced from the central component by integer multiples of a constant detuning. Spectra obtained here differ qualitatively from those observed for a single pair of modulating fields [B. Blind, P.R. Fontana, and P. Thomann, J. Phys. B 13, 2717 (1980)]. In the case of a small number of the modulating fields, a multipeaked spectrum is obtained with the spectral features located at fixed frequencies that are independent of the number of modulating fields and their Rabi frequencies. As the number of the modulating fields increases, the spectrum ultimately evolves to the well-known Mellow triplet with the sidebands shifted from the central component by an effective Rabi frequency whose magnitude depends on the initial relative phases of the components of the driving held. For equal relative phases, the effective Rabi frequency of the driving field can be reduced to zero resulting in the disappearance of fluorescence spectrum, i.e., the atom can stop interacting with the field. When the central component and the modulating fields are 180 degrees out of phase, the spectrum retains its triplet structure with the sidebands located at frequencies equal to the sum of the Rabi frequencies of the component of the driving field. Moreover, we shaw that the frequency of spontaneous emission can be controlled and switched from one frequency to another when the Rabi frequency or initial phase of the modulating fields are varied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the effect of quantum interference on the population distribution and absorptive properties of a V-type three-level atom driven by two lasers of unequal intensities and different angular frequencies. Three coupling configurations of the lasers to the atom are analysed: (a) both lasers coupled to the same atomic transition, (b) each laser coupled to different atomic transition and (c) each laser coupled to both atomic transitions. Dressed stales for the three coupling configurations are identified, and the population distribution and absorptive properties of the weaker field are interpreted in terms of transition dipole moments and transition frequencies among these dressed states. In particular, we find that in the first two cases there is no population inversion between the bare atomic states, but the population can be trapped in a superposition of the dressed states induced by quantum interference and the stronger held. We show that the trapping of the population, which results from the cancellation of transition dipole moments, does not prevent the weaker field to be coupled to the cancelled (dark) transitions. As a result, the weaker field can be strongly amplified on transparent transitions. In the case of each laser coupled to both atomic transitions the population can be trapped in a linear superposition of the excited bare atomic states leaving the ground state unpopulated in the steady state. Moreover, we find that the absorption rate of the weaker field depends on the detuning of the strong field from the atomic resonances and the splitting between the atomic excited states. When the strong held is resonant to one of the atomic transitions a quasi-trapping effect appears in one of the dressed states. In the quasi-trapping situation all the transition dipole moments are different from zero, which allows the weaker field to be amplified on the inverted transitions. When the strong field is tuned halfway between the atomic excited states, the population is completely trapped in one of the dressed states and no amplification is found for the weaker field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study a three-level atomic system of the vee type, but driven on only one transition by a monochromatic laser. It is shown that the gain of a probe beam, recently predicted for this system by Menon and Agarwal (Menon S and Agarwal G 2000 Phys. Rev. A 61 13 807), is due to an unexpected amplification on a completely inverted, nondecaying (dark) transition. This prediction violates the well known balance condition between the population inversion and the coupling strength of the probe field to the inverted transition, which requires that the coupling strength reduces with increasing population inversion. We show that the condition may be violated only if the probe field selectively couples to just one of the atomic transitions: when it couples to both transitions, the balance condition is satisfied and the system is transparent for the probe field coupled to the dark transitions. No amplification is possible in the latter case.