194 resultados para Methods: numerical
em University of Queensland eSpace - Australia
Resumo:
In this paper we construct predictor-corrector (PC) methods based on the trivial predictor and stochastic implicit Runge-Kutta (RK) correctors for solving stochastic differential equations. Using the colored rooted tree theory and stochastic B-series, the order condition theorem is derived for constructing stochastic RK methods based on PC implementations. We also present detailed order conditions of the PC methods using stochastic implicit RK correctors with strong global order 1.0 and 1.5. A two-stage implicit RK method with strong global order 1.0 and a four-stage implicit RK method with strong global order 1.5 used as the correctors are constructed in this paper. The mean-square stability properties and numerical results of the PC methods based on these two implicit RK correctors are reported.
Resumo:
The BR algorithm is a novel and efficient method to find all eigenvalues of upper Hessenberg matrices and has never been applied to eigenanalysis for power system small signal stability. This paper analyzes differences between the BR and the QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage requirement. The BR algorithm utilizes accelerating strategies to improve its performance when computing eigenvalues of narrowly banded, nearly tridiagonal upper Hessenberg matrices. These strategies significantly reduce the computation time at a reasonable level of precision. Compared with the QR algorithm, the BR algorithm requires fewer iteration steps and less storage space without depriving of appropriate precision in solving eigenvalue problems of large-scale power systems. Numerical examples demonstrate the efficiency of the BR algorithm in pursuing eigenanalysis tasks of 39-, 68-, 115-, 300-, and 600-bus systems. Experiment results suggest that the BR algorithm is a more efficient algorithm for large-scale power system small signal stability eigenanalysis.
Resumo:
In this paper we present the composite Euler method for the strong solution of stochastic differential equations driven by d-dimensional Wiener processes. This method is a combination of the semi-implicit Euler method and the implicit Euler method. At each step either the semi-implicit Euler method or the implicit Euler method is used in order to obtain better stability properties. We give criteria for selecting the semi-implicit Euler method or the implicit Euler method. For the linear test equation, the convergence properties of the composite Euler method depend on the criteria for selecting the methods. Numerical results suggest that the convergence properties of the composite Euler method applied to nonlinear SDEs is the same as those applied to linear equations. The stability properties of the composite Euler method are shown to be far superior to those of the Euler methods, and numerical results show that the composite Euler method is a very promising method. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The numerical solution of stochastic differential equations (SDEs) has been focussed recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the best choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.
Resumo:
In a recent study, severe distortions in the proton images of an excised, fixed, human brain in an 11.1 Tesla/40 cm MR instrument have been observed, and the effect modeled on phantom images using a finite difference time domain (FDTD) model. in the present study, we extend these simulations to that of a complete human head, employing a hybrid FDTD and method of moments (MoM) approach, which provides a validated method for simulating biological samples in coil structures. The effect of fixative on the image distortions is explored. importantly, temperature distributions within the head are also simulated using a bioheat method based on parameters derived from the electromagnetic simulations. The MoM/FDTD simulations confirm that the transverse magnetic field (B,) from a ReCav resonator exhibits good homogeneity in air but strong inhomogeneity when loaded with the head with or without fixative. The fixative serves to increase the distortions, but they are still significant for the in vivo simulations. The simulated signal intensity (SI) distribution within the sample confirm the distortions in the experimental images are caused by the complex interactions of the incident electromagnetic fields with tissue, which is heterogeneous in terms of conductivity and permittivity. The temperature distribution is likewise heterogeneous, raising concerns regarding hot spot generation in the sample that may exceed acceptable levels in future in vivo studies. As human imaging at 11.1 T is some time away, simulations are important in terms of predicting potential safety issues as well as evaluating practical concerns about the quality of images. Simulation on a whole human head at 11.1 T implies the wave behavior presents significant engineering challenges for ultra-high-field (UHF) MRI. Novel strategies will have to be employed in imaging technique and resonator design for UHF MRI to achieve the theoretical signal-to-noise ratio (SNR) improvements it offers over lower field systems. (C) 2005 Wiley Periodicals, Inc.
Resumo:
We propose quadrature rules for the approximation of line integrals possessing logarithmic singularities and show their convergence. In some instances a superconvergence rate is demonstrated.
Resumo:
Krylov subspace techniques have been shown to yield robust methods for the numerical computation of large sparse matrix exponentials and especially the transient solutions of Markov Chains. The attractiveness of these methods results from the fact that they allow us to compute the action of a matrix exponential operator on an operand vector without having to compute, explicitly, the matrix exponential in isolation. In this paper we compare a Krylov-based method with some of the current approaches used for computing transient solutions of Markov chains. After a brief synthesis of the features of the methods used, wide-ranging numerical comparisons are performed on a power challenge array supercomputer on three different models. (C) 1999 Elsevier Science B.V. All rights reserved.AMS Classification: 65F99; 65L05; 65U05.