229 resultados para Marine Strategy Framework Directive
em University of Queensland eSpace - Australia
Resumo:
Community-based coastal resource management has been widely applied within the Philippines. However, small-scale community-based reserves are often inefficient owing to management inadequacies arising because of a lack of local support or enforcement or poor design. Because there are many potential pitfalls during the establishment of even small community-based reserves, it is important for coastal managers, communities, and facilitating institutions to have access to a summary of the key factors for success. Reviewing relevant literature, we present a framework of lessons learned during the establishment of protected areas, mainly in the Philippines. The framework contains summary guidance on the importance of (1) an island location, (2) small community population size, (3) minimal effect of land-based development, (4) application of a bottom-up approach, (5) an external facilitating institution, (6) acquisition of title, (7) use of a scientific information database, (8) stakeholder involvement, (9) the establishment of legislation, (10) community empowerment, (11) alternative livelihood schemes, (12) surveillance, (13) tangible management results, (14) continued involvement of external groups after reserve establishment, and (15) small-scale project expansion. These framework components guided the establishment of a community-based protected area at Danjugan Island, Negros Occidental, Philippines. This case study showed that the framework was a useful guide that led to establishing and implementing a community-based marine reserve. Evaluation of the reserve using standard criteria developed for the Philippines shows that the Danjugan Island protected area can be considered successful and sustainable. At Danjugan Island, all of the lessons synthesized in the framework were important and should be considered elsewhere, even for relatively small projects. As shown in previous projects in the Philippines, local involvement and stewardship of the protected area appeared particularly important for its successful implementation. The involvement of external organizations also seemed to have a key role in the success of the Danjugan Island project by guiding local decision-makers in the sociobiological principles of establishing protected areas. However, the relative importance of each component of the framework will vary between coastal management initiatives both within the Philippines and across the wider Asian region.
Resumo:
Many harvested marine and terrestrial populations have segments of their range protected in areas free from exploitation. Reasons for areas being protected from harvesting include conservation, tourism, research, protection of breeding grounds, stock recovery, harvest regulation, or habitat that is uneconomical to exploit. In this paper we consider the problem of optimally exploiting a single species local population that is connected by dispersing larvae to an unharvested local population. We define a spatially-explicit population dynamics model and apply dynamic optimization techniques to determine policies for harvesting the exploited patch. We then consider how reservation affects yield and spawning stock abundance when compared to policies that have not recognised the spatial structure of the metapopulation. Comparisons of harvest strategies between an exploited metapopulation with and without a harvest refuge are also made. Results show that in a 2 local population metapopulation with unidirectional larval transfer, the optimal exploitation of the harvested population should be conducted as if it were independent of the reserved population. Numerical examples suggest that relative source populations should be exploited if the objective is to maximise spawning stock abundance within a harvested metapopulation that includes a protected local population. However, this strategy can markedly reduce yield over a sink harvested reserve system and may require strict regulation for conservation goals to be realised. If exchange rates are high, results indicate that spawning stock abundance can be less in a reserve system than in a fully exploited metapopulation. In order to maximise economic gain in the reserve system, results indicate that relative sink populations should be harvested. Depending on transfer levels, loss in harvest through reservation can be minimal, and is likely to be compensated by the potential environmental and economic benefits of the reserve.
Resumo:
The Brisbane River and Moreton Bay Study, an interdisciplinary study of Moreton Bay and its major tributaries, was initiated to address water quality issues which link sewage and diffuse loading with environmental degradation. Runoff and deposition of fine-grained sediments into Moreton Bay, followed by resuspension, have been linked with increased turbidity and significant loss of seagrass habitat. Sewage-derived nutrient enrichment, particularly nitrogen (N), has been linked to algal blooms by sewage plume maps. Blooms of a marine cyanobacterium, Lyngbya majuscula, in Moreton Bay have resulted in significant impacts on human health (e.g., contact dermatitis) and ecological health (e.g., seagrass loss), and the availability of dissolved iron from acid sulfate soil runoff has been hypothesised. The impacts of catchment activities resulting in runoff of sediments, nutrients and dissolved iron on the health of the Moreton Bay waterways are addressed. The Study, established by 6 local councils in association with two state departments in 1994, forms a regional component of a national and state program to achieve ecologically sustainable use of the waterways by protecting and enhancing their health, while maintaining economic and social development. The Study framework illustrates a unique integrated approach to water quality management whereby scientific research, community participation and the strategy development were done in parallel with each other. This collaborative effort resulted in a water quality management strategy which focuses on the integration of socioeconomic and ecological values of the waterways. This work has led to significant cost savings in infrastructure by providing a clear focus on initiatives towards achieving healthy waterways. The Study's Stage 2 initiatives form the basis for this paper.
Resumo:
The relationships between reproductive condition, level of reproductive investment and adrenocortical modulation to capture stress in marine turtles form the basis of this study. When subjected to either capture or ecological stressors, nesting marine turtles have demonstrated adrenocortical responses that are both small in magnitude, and slow in responsiveness. These observations were further investigated to determine whether this minimal stress response was a physiological strategy to maximize reproductive investment in adult green Chelonia mydas and hawksbill Eretmochelys imbricata turtles. Female green and hawksbill turtles exhibited a decrease in adrenocortical responsiveness with progressive reproductive condition. Breeding turtles exhibited most suppression of their adrenocortical response to capture compared to both non-breeding and pre-breeding female counterparts. Nesting green turtles maintained a suppressed adrenocortical response to capture throughout the nesting season despite decreased reproductive investment. In contrast, male green and hawksbill turtles were less able to modulate their corticosterone (B) response to acute capture stress. During breeding, male turtles possessed significantly greater adrenocortical responses to capture than females. These results could indicate that the large reproductive investment necessary for female marine turtle reproduction might underlie the marked decrease in adrenocortical responsiveness. This hormonal mechanism could function as one strategy by which female marine turtles maximize their current reproductive event, even though under certain situations this mechanism could entail costs to female survival.
Resumo:
Marine reserves have been widely touted as a promising strategy for managing fisheries and protecting marine biodiversity. However, their establishment can involve substantial social conflict and may not produce the anticipated biological and economic benefits. A crucial factor associated with the success of marine reserves for enhancing fisheries and protecting biodiversity is the spatial distribution of fishing activity. Fishers may be attracted to the perimeter of a reserve in expectation of spillover of adult fishes. This concentration of effort can reduce spillover of fish to the surrounding fishery and has major implications for the effectiveness of reserves in achieving ecological and socioeconomic goals. We examined the spatial distribution of fishing activity relative to California's Big Creek Marine Ecological Reserve and found no aggregation near the reserve. We discuss the factors driving the spatial distribution of fishing activity relative to the reserve and the relevance of that distribution to the performance and evaluation of marine reserves.
Resumo:
Functional knowledge of the physiological basis of crop adaptation to stress is a prerequisite for exploiting specific adaptation to stress environments in breeding programs. This paper presents an analysis of yield components for pearl millet, to explain the specific adaptation of local landraces to stress environments in Rajasthan, India. Six genotypes, ranging from high-tillering traditional landraces to low-tillering open-pollinated modern cultivars, were grown in 20 experiments, covering a range of nonstress and drought stress patterns. In each experiment, yield components (particle number, grain number, 100 grain mass) were measured separately for main shoots, basal tillers, and nodal tillers. Under optimum conditions, landraces had a significantly lower grain yield than the cultivars, but no significant differences were observed at yield levels around 1 ton ha(-1). This genotype x environment interaction for grain yield was due to a difference in yield strategy, where landraces aimed at minimising the risk of a crop failure under stress conditions, and modem cultivars aimed at maximising yield potential under optimum conditions. A key aspect of the adaptation of landraces was the small size of the main shoot panicle, as it minimised (1) the loss of productive tillers during stem elongation; (2) the delay in anthesis if mid-season drought occurs; and (3) the reduction in panicle productivity of the basal tillers under stress. In addition, a low investment in structural panicle weight, relative to vegetative crop growth rate, promoted the production of nodal tillers, providing a mechanism to compensate for reduced basal tiller productivity if stress occurred around anthesis. A low maximum 100 grain mass also ensured individual grain mass was little affected by environmental conditions. The strategy of the high-tillering landraces carries a yield penalty under optimum conditions, but is expected to minimise the risk of a crop failure, particularly if mid-season drought stress occurs. The yield architecture of low-tillering varieties, by contrast, will be suited to end-of-season drought stress, provided anthesis is early. Application of the above adaptation mechanisms into a breeding program could enable the identification of plant types that match the prevalent stress patterns in the target environments. (C) 2003 E.J. van Oosterom. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The most commonly asked question about cooperative interactions is how they are maintained when cheating is theoretically more profitable [1]. In cleaning interactions, where cleaners remove parasites from apparently cooperating clients, the classical question asked is why cleaner fish can clean piscivorous client fish without being eaten, a problem Trivers [2] used to explain reciprocal altruism. Trivers [2] suggested that predators refrain from eating cleaners only when the repeated removal of parasites by a particular cleaner results in a greater benefit than eating the cleaner. Although several theoretical models have examined cheating behavior in clients [3,4], no empirical tests have been done (but see Darcy [5]). It has been observed that cleaners are susceptible to predation [6, 7]. Thus, cleaners should have evolved strategies to avoid conflict or being eaten. In primates, conflicts are often resolved with conflict or preconflict management behavior [8]. Here, I show that cleaner fish tactically stimulate clients while swimming in an oscillating dancing manner (tactile dancing) more when exposed to hungry piscivorous clients than satiated ones, regardless of the client's parasite load. Tactile dancing thus may function as a preconflict management strategy that enables cleaner fish to avoid conflict with potentially dangerous clients.
Resumo:
This paper argues for a more specific formal methodology for the textual analysis of individual game genres. In doing so, it advances a set of formal analytical tools and a theoretical framework for the analysis of turn-based computer strategy games. The analytical tools extend the useful work of Steven Poole, who suggests a Peircian semiotic approach to the study of games as formal systems. The theoretical framework draws upon postmodern cultural theory to analyse and explain the representation of space and the organisation of knowledge in these games. The methodology and theoretical framework is supported by a textual analysis of Civilization II, a significant and influential turn-based computer strategy game. Finally, this paper suggests possibilities for future extensions of this work.