29 resultados para MONOMER CONVERSION

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The free radical polymerization of styrene in bulk was monitored by ESR and FT near-infrared spectroscopy at 70°C for a series of concentrations of the initiator, dimethyl 2,2′-azobis(isobutyrate). In order to obtain detailed kinetic information over the intire conversion range, and the gel effect range in particular, conversion and free radical concentration data points were accumulated with exceptionally short time intervals. The polystyrene radical concentration ([St•]) went through a sharp maximum at the gel effect, a feature that has hitherto escaped observation due to the rapid concentration changes in the gel effect range relative to the data point time intervals of previous studies. Temperature measurements throughout the polymerization were employed to calculate that a temperature increase was not the cause of the [St•] maximum, which thus appeares to be a genuine feature of the gel effect of this system under isothermal conditions. The propagation rate constant (kp) as a function of monomer conversion exhibited a marked dependence on initiator concentration at high monomer conversion; the sharp decrease in kp with increasing conversion was shifted to higher conversions with increasing initiator concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acid-mediated transformation of syn and anti methylene interrupted cis,cis and cis,trans bisepoxides to tetrahydrofurans is high yielding, and demonstrates both regioselectivity and stereoselectivity. Trans,trans methylene interrupted bisepoxides do not yield tetrahydrofurans under the same conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic conversion of N2O to N-2 over Cu- and Co-impregnated activated carbon catalysts (Cu/AC and Co/AC) was investigated. Catalytic activity measurements were carried out in a fixed-bed flow reactor at atmospheric pressure. The catalysts were characterized by N-2 adsorption, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). This study aimed to provide insights into the following aspects: the metal dispersion, changes in pore structure, influence of catalyst loading on reaction, and reaction mechanism. Increasing loading of Co or Cu led to decreasing dispersion, but 20 wt % loading was an upper limit for optimal activities in both cases, with too high loading causing sintering of metal. Co exhibited a relatively better dispersion than Cu. Impregnation of metal led to a large decrease in surface area and pore volume, especially for 30 wt % of loading. 20 wt % of loading has proved to be the optimum for both Cu and Co, which shows the highest activity. Both N2O-Co/AC and -Cu/AC reactions are based upon a redox mechanism, but the former is limited by the oxygen transfer from catalysts to carbon, while N2O chemisorption on the surface of Cu catalyst controls the latter. The removal of oxygen from cobalt promotes the activity of Co/AC, but it is beneficial for Cu/AC to keep plenty of oxygen to maintain the intermediate oxidation of copper-Cu1+. The different nature of the two catalysts and their catalytic reaction mechanisms are closely related to their different electronegativities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic conversion of N2O to N-2 With potassium catalysts supported on activated carbon (K/AC) was investigated. Potassium proves to be much more active and stable than either copper or cobalt because potassium possesses strong abilities both for N2O chemisorption and oxygen transfer. Potassium redispersion is found to play a critical role in influencing the catalyst stability. A detailed study of the reaction mechanism was conducted based upon three different catalyst loadings. It was found that during temperature-programmed reaction (TPR), the negative oxygen balance at low temperatures (< 50 degrees C) is due to the oxidation of the external surface of potassium oxide particles, while the bulk oxidation accounts for the oxygen accumulation at higher temperatures (below ca. 270 degrees C). N2O is beneficial for the removal of carbon-oxygen complexes because of the formation of CO2 instead of CO and because of its role in making the chemisorption of produced CO2 on potassium oxide particles less stable. A conceptual three-zone model was proposed to clarify the reaction mechanism over K/AC catalysts. CO2 chemisorption at 250 degrees C proves to be an effective measurement of potassium dispersion. (C) 1999 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of acidic treatments on N2O reduction over Ni catalysts supported on activated carbon was systematically studied. The catalysts were characterized by N-2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). It is found that surface chemistry plays an important role in N2O-carbon reaction catalyzed by Ni catalyst. HNO3 treatment produces more active acidic surface groups such as carboxyl and lactone, resulting in a more uniform catalyst dispersion and higher catalytic activity. However, HCl treatment decreases active acidic groups and increases the inactive groups, playing an opposite role in the catalyst dispersion and catalytic activity. A thorough discussion of the mechanism of the N2O catalytic reduction is made based upon results from isothermal reactions, temperature-programmed reactions (TPR) and characterization of catalysts. The effect of acidic treatment on pore structure is also discussed. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free radical bulk copolymerization of methyl methacrylate (MMA) and allyl acetate (AAc) has been investigated using electron spin resonance (ESR) and FT-near infrared (FTNIR) spectroscopy. Data are used to evaluate the rate constants. The mole fraction of AAc plays an important role in the copolymerization of these two monomers. AAc not only delays the Trommsdorff effect but also increases the onset of percentage total conversion at which the Trommsdorff region begins. With AAc fraction 0.5 and higher, no Trommsdorff effect was observed. Inclusion of AAc into copolymer structure mainly occurs in the Trommsdorf region or when the AAc fraction in the comonomer feed is dominant. This is associated with a drop in the concentration of propagating radicals. However, ESR spectra indicate that the MMA propagating radical is predominant during the reaction. In the comonomer mixtures where a Trommsdorff region can be observed, the addition of AAc does not produce any significant change in k(p) and k(t) in the steady state region. Major changes in k(p) and k(t) are observed after the gel point and glassy state, respectively. (C) 2001 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactions of sodium benzoate with a series of trimesylates derived from glucosamine have been examined in an attempt to gain facile access to galactosamine analogues. Trimesylate 17, in which the amino group was protected as a phthalimide, underwent double displacement at positions 4 and 6 to give the dibenzoate 18 with the desired galactosamine configuration. In contrast, trimesylates 21 and 27, in which the amino groups were protected as acetamides, unexpectedly underwent double displacement at positions 3 and 6, giving products 22 and 28, respectively, with allosamine configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bulk free radical copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N-vinyl-2-pyrrolidone (VP) was carried out to low conversions at 50 degreesC, using benzoyl peroxide (BPO) as initiator. The compositions of the copolymers; were determined using C-13 NMR spectroscopy. The conversion of monomers to polymers was studied using FT-NIR spectroscopy in order to predict the extent of conversion of monomer to polymer. From model fits to the composition data, a statistical F-test revealed that die penultimate model describes die copolymerization better than die terminal model. Reactivity ratios were calculated by using a non-linear least squares analysis (NLLS) and r(H) = 8.18 and r(V) = 0.097 were found to be the best fit values of the reactivity ratios for the terminal model and r(HH) = 12.0, r(VH) = 2.20, r(VV) = 0.12 and r(HV) = 0.03 for the penultimate model. Predictions were made for changes in compositions as a function of conversion based upon the terminal and penultimate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the potential of magic angle spinning nuclear magnetic resonance (MAS NMR) in the elucidation of post-mortem metabolism in muscle biopsies, simultaneous H-1 and (31)p MAS NMR measurements were made continuously on postmortem (20 min to 24 h) muscle longissimus samples from rabbits. The animals had either been or not been given adrenaline (0.5 mg kg(-1) 4 h pre-slaughter) to deplete stores of muscle glycogen. The intracellular pH was calculated from H-1 spectra, and the post-mortem rate of formation of lactate was followed and quantified. Comparison of measurements made on muscle samples from rabbits treated with adrenaline with measurements made on muscle samples from untreated' rabbits revealed significant effects of adrenaline treatment on both pH (pH24 h = 6.42 vs. pH24 It = 5.60) and formation of lactate (16 mmol g(-1) vs. 65 mmol g(-1)). The P-31 NMR spectra were used to follow the rate of degradation of ATP and phosphocreatine. The present study clearly shows that MAS NMR has potential for the study of post-mortem energy metabolism.