49 resultados para Learning from Examples
em University of Queensland eSpace - Australia
Resumo:
Learning from mistakes has proven to be an effective way of learning in the interactive document classifications. In this paper we propose an approach to effectively learning from mistakes in the email filtering process. Our system has employed both SVM and Winnow machine learning algorithms to learn from misclassified email documents and refine the email filtering process accordingly. Our experiments have shown that the training of an email filter becomes much effective and faster
Resumo:
Except for a few large scale projects, language planners have tended to talk and argue among themselves rather than to see language policy development as an inherently political process. A comparison with a social policy example, taken from the United States, suggests that it is important to understand the problem and to develop solutions in the context of the political process, as this is where decisions will ultimately be made.
Resumo:
The author overviews the use of pregabalin in neuropathic pain. (non-author abstract)
Resumo:
This paper reports on research findings from a larger study which seeks to understand leadership from the experiences of well-known and well-recognised Australian leaders across a spectrum of endeavours such as the arts, business, science, the law and politics. To date there appears to be limited empirical research that has investigated the insights of Australian leaders regarding their leadership experiences, beliefs and practices. In this paper, the leadership story of a well-respected medical scientist is discussed revealing the contextual factors that influenced her thinking about leadership as well as the key values she embodies as a leader. The paper commences by briefly considering some of the salient leadership literature in the field. In particular, two prominent theoretical frameworks provided by Leavy (2003)and Kouzes and Posner (2002) are explored. While Leavy’s framework construes leadership as consisting of three “C’s” – context , conviction and credibility, Kouzes and Posner (2002)refer to five practices of exemplary leadership. The paper provides a snapshot of the life forces and context that played an important role in shaping the leader’s views and practices. An analytical discussion of these practices is considered in the light of the earlier frameworks identified. Some implications of the findings from this non-education context for those in schools are briefly noted.
Resumo:
Machine learning techniques have been recognized as powerful tools for learning from data. One of the most popular learning techniques, the Back-Propagation (BP) Artificial Neural Networks, can be used as a computer model to predict peptides binding to the Human Leukocyte Antigens (HLA). The major advantage of computational screening is that it reduces the number of wet-lab experiments that need to be performed, significantly reducing the cost and time. A recently developed method, Extreme Learning Machine (ELM), which has superior properties over BP has been investigated to accomplish such tasks. In our work, we found that the ELM is as good as, if not better than, the BP in term of time complexity, accuracy deviations across experiments, and most importantly - prevention from over-fitting for prediction of peptide binding to HLA.
Resumo:
In this article, we propose a framework, namely, Prediction-Learning-Distillation (PLD) for interactive document classification and distilling misclassified documents. Whenever a user points out misclassified documents, the PLD learns from the mistakes and identifies the same mistakes from all other classified documents. The PLD then enforces this learning for future classifications. If the classifier fails to accept relevant documents or reject irrelevant documents on certain categories, then PLD will assign those documents as new positive/negative training instances. The classifier can then strengthen its weakness by learning from these new training instances. Our experiments’ results have demonstrated that the proposed algorithm can learn from user-identified misclassified documents, and then distil the rest successfully.