12 resultados para LYAPUNOV FUNCTIONALS

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control of chaotic instability in a simplified model of a spinning spacecraft with dissipation is achieved using an algorithm derived using Lyapunov's second method. The control method is implemented on a realistic spacecraft parameter configuration which has been found to exhibit chaotic instability for a range of forcing amplitudes and frequencies when a sinusoidally varying torque is applied to the spacecraft. Such a torque, may arise in practice from an unbalanced rotor or from vibrations in appendages. Numerical simulations are performed and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents and bifurcation diagrams. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm for suppressing the chaotic oscillations in non-linear dynamical systems with singular Jacobian matrices is developed using a linear feedback control law based upon the Lyapunov-Krasovskii (LK) method. It appears that the LK method can serve effectively as a generalised method for the suppression of chaotic oscillations for a wide range of systems. Based on this method, the resulting conditions for undisturbed motions to be locally or globally stable are sufficient and conservative. The generalized Lorenz system and disturbed gyrostat equations are exemplified for the validation of the proposed feedback control rule. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using only linear interactions and a local parity measurement we show how entanglement can be detected between two harmonic oscillators. The scheme generalizes to measure both linear and nonlinear functionals of an arbitrary oscillator state. This leads to many applications including purity tests, eigenvalue estimation, entropy, and distance measures-all without the need for nonlinear interactions or complete state reconstruction. Remarkably, experimental realization of the proposed scheme is already within the reach of current technology with linear optics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anisotropic norm of a linear discrete-time-invariant system measures system output sensitivity to stationary Gaussian input disturbances of bounded mean anisotropy. Mean anisotropy characterizes the degree of predictability (or colouredness) and spatial non-roundness of the noise. The anisotropic norm falls between the H-2 and H-infinity norms and accommodates their loss of performance when the probability structure of input disturbances is not exactly known. This paper develops a method for numerical computation of the anisotropic norm which involves linked Riccati and Lyapunov equations and an associated special type equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of chaotic vibrations in a dual-spin spacecraft with an axial nutational damper is achieved using two techniques. The control methods are implemented on two realistic spacecraft parameter configurations that have been found to exhibit chaotic instability when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitudes and frequencies. Such a torque, in practice, may arise under malfunction of the control system or from an unbalanced rotor. Chaotic instabilities arising from these torques could introduce uncertainties and irregularities into a spacecraft's attitude motion and, consequently, could have disastrous effects on its operation. The two control methods, recursive proportional feedback and continuous delayed feedback, are recently developed techniques for control of chaotic motion in dynamic systems. Each technique is outlined and the effectiveness on this model compared and contrasted. Numerical simulations are performed, and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents, and bifurcation diagrams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of chaotic instability in a rotating multibody system in the form of a dual-spin spacecraft with an axial nutational damper is achieved using an algorithm derived using energy methods. The control method is implemented on two realistic spacecraft parameter configurations which have been found to exhibit chaotic instability when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitudes and frequencies. Such a torque, in practice, may arise under malfunction of the control system or from an unbalanced rotor. Chaotic instabilities arising from these torques could introduce uncertainties and irregularities into a spacecraft's attitude and consequently impair pointing accuracy. The control method is formulated from nutational stability results derived using an energy sink approximation for a dual-spin spacecraft with an asymmetric platform and axisymmetric rotor. The effectiveness of the control method is shown numerically and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents and Bifurcation diagrams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the partial regularity of minimizers of energy functionals such as (1)/(p)integral(Omega)[sigma(u)dA(p) + (1)/(2)delu(2p)]dx, where u is a map from a domain Omega is an element of R-n into the m-dimensional unit sphere of Rm+1 and A is a differential one-form in Omega.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the following p(x)-Laplacian problem: -div(a(x)&VERBAR;&DEL; u&VERBAR;(p(x)-2)&DEL; u)+b(x)&VERBAR; u&VERBAR;(p(x)-2)u = f(x, u), x ε &UOmega;, u = 0, on &PARTIAL; &UOmega;, where 1< p(1) &LE; p(x) &LE; p(2) < n, &UOmega; &SUB; R-n is a bounded domain and applying the mountain pass theorem we obtain the existence of solutions in W-0(1,p(x)) for the p(x)-Laplacian problems in the superlinear and sublinear cases. © 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melnikov's method is used to analytically predict the onset of chaotic instability in a rotating body with internal energy dissipation. The model has been found to exhibit chaotic instability when a harmonic disturbance torque is applied to the system for a range of forcing amplitude and frequency. Such a model may be considered to be representative of the dynamical behavior of a number of physical systems such as a spinning spacecraft. In spacecraft, disturbance torques may arise under malfunction of the control system, from an unbalanced rotor, from vibrations in appendages or from orbital variations. Chaotic instabilities arising from such disturbances could introduce uncertainties and irregularities into the motion of the multibody system and consequently could have disastrous effects on its intended operation. A comprehensive stability analysis is performed and regions of nonlinear behavior are identified. Subsequently, the closed form analytical solution for the unperturbed system is obtained in order to identify homoclinic orbits. Melnikov's method is then applied on the system once transformed into Hamiltonian form. The resulting analytical criterion for the onset of chaotic instability is obtained in terms of critical system parameters. The sufficient criterion is shown to be a useful predictor of the phenomenon via comparisons with numerical results. Finally, for the purposes of providing a complete, self-contained investigation of this fundamental system, the control of chaotic instability is demonstated using Lyapunov's method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a problem of robust performance analysis of linear discrete time varying systems on a bounded time interval. The system is represented in the state-space form. It is driven by a random input disturbance with imprecisely known probability distribution; this distributional uncertainty is described in terms of entropy. The worst-case performance of the system is quantified by its a-anisotropic norm. Computing the anisotropic norm is reduced to solving a set of difference Riccati and Lyapunov equations and a special form equation.