14 resultados para Intraocular Lens Implantation
em University of Queensland eSpace - Australia
Resumo:
The precipitation patterns and characteristics of calcium phosphate (CaP) phases deposited on HEMA-based hydrogels upon incubation in simulated body fluid (SBF-2) containing a protein (human serum albumin) have been investigated in relation to the calcification in an organic-free medium (SBF-1) and to that occurring after subcutaneous implantation in rats. In SBF-2, the deposits occurred exclusively as a peripheral layer on the surface of the hydrogels and consisted mainly of precipitated hydroxyapatite, a species deficient in calcium and hydroxyl ions, similarly to the deposits formed on the implanted hydrogels, where the deposited layer was thicker. In SBF-1, the deposits were mainly of brushite type. There was no evidence that albumin penetrated the interstices of hydrogels. As the X-ray diffraction patterns of the CaP deposits generated in SBF-2 showed a similar nature with those formed on the implanted hydrogel, it was concluded that the calcification in SBF-2 can mimic to a reliable extent the calcification process taking place in a biological environment.
Resumo:
To simulate the process of calcification in hydrogel implants, particularly calcification inside hydrogels, in vitro experiments using two compartment permeation cells have been performed. PHEMA hydrogel membranes were synthesized by free radical polymerization in bulk. The permeability and diffusion coefficient for Ca2+ ions at 37 ° C were determined using Fick's laws of diffusion. It was evident that Ca2+ ions either from CaCl2 or SBF solutions may diffuse through PHEMA hydrogel membranes. The fort-nation of calcium phosphate deposits inside the hydrogel was observed and attributed to a heterogeneous nucleation from diffusing calcium and phosphate ions. The morphology of the deposits both on the surface and inside the hydrogels was found to be similar, i.e. spherical aggregates with a diameter of less than one micron. © 2005 Elsevier B.V. All rights reserved.
Resumo:
This case outlines the phacoemulsification technique used to overcome the challenge of the hyperdeep anterior chamber, weak zonules, abnormal anterior capsule, and large capsular bag. Key steps included trypan blue staining of the anterior capsule, a large capsulorhexis, prolapse of the nucleus into the anterior chamber with phacoemulsification anterior to the capsulorhexis, and a posterior chamber-placed iris-clip intraocular lens. Successful visual rehabilitation is achievable in these anatomically challenging eyes. © 2006 ASCRS and ESCRS.
Resumo:
In-vitro calcification of poly(2-hydroxyethyl methacrylate) (PHEMA)-based hydrogels in simulated body fluid (SBF) under a steady/batch system without agitation or stirring the solutions has been investigated. It was noted that the formation of calcium phosphate (CaP) deposits primarily proceeded through spontaneous precipitation. The CaP deposits were found both on the surface and inside the hydrogels. It appears that the effect of chemical structure or reducing the relative number of oxygen atoms in the copolymers on the degree of calcification was only important at the early stage of calcification. The morphology of the CaP deposits was observed to be spherical aggregates with a thickness of the CaP layer less than 0.5 mu m. Additionally, the CaP deposits were found to be poorly crystalline or to have nano-size crystals, or to exist mostly as an amorphous phase. Characterization of the CaP phases in the deposits revealed that the deposits were comprised mainly of whitlockite [Ca9MgH(PO4)(7)] type apatite and DCPD (CaHPO4 center dot 2H(2)O) as the precursors of hydroxyapatite [Ca-10(PO4)(6)(OH)(2)]. The presence of carbonate in the deposits was also detected during the calcification of PHEMA based hydrogels in SBF solution.
Resumo:
Deep-sea fish, defined as those living below 200 m, inhabit a most unusual photic environment, being exposed to two sources of visible radiation: very dim downwelling sunlight and bioluminescence, both of which are, in most cases. maximal at wavelengths around 450-500 nm. This paper summarises the reflective properties of the ocular tapeta often found in these animals the pigmentation of their lenses and the absorption characteristics of their visual pigments. Deepsea tapeta usually appear blue to the human observer. reflecting mainly shortwave radiation. However, reflection in other parts of the spectrum is not uncommon and uneven tapetal distribution across the retina is widespread. Perhaps surprisingly, given the fact that they live in a photon limited environment, the lenses of some deep-sea teleosts are bright yellow, absorbing much of the shortwave part of the spectrum. Such lenses contain a variety of biochemically distinct pigments which most likely serve to enhance the visibility of bioluminescent signals. Of the 195 different visual pigments characterised by either detergent extract or microspectrophotometry in the retinae of deep-sea fishes, cn. 87% have peak absorbances within the range 468-494 nm. Modelling shows that this is most likely an adaptation for the detection of bioluminescence. Around 13% of deep-sea fish have retinae containing more than one visual pigment. Of these, we highlight three genera of stomiid dragonfishes, which uniquely produce far red bioluminescence from suborbital photophores. Using a combination of longwave-shifted visual pigments and in one species (Malacosteus niger) a chlorophyll-related photosensitizer. these fish have evolved extreme red sensitivity enabling them to see their own bioluminescence and giving them a private spectral waveband invisible to other inhabitants of the deep-ocean. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Matthiessen's ratio (distance from centre of lens to retina: lens radius) was measured in developing black bream, Acanthopagrus butcheri (Sparidae, Teleostei). The value decreased over the first 10 days post-hatch from 3.6 to 2.3 along the nasal and from four to 2.6 along temporal axis. Coincidentally, there was a decrease in the focal ratio of the lens (focal length:lens radius). Morphologically, the accommodatory retractor lentis muscle appeared to become functional between 10-12 days post-hatch. The results suggest that a higher focal ratio compensates for the relatively high Matthiessen's ratio brought about by constraints of small eye size during early development. Combined with differences in axial length, this provides a means for larval fish to focus images from different distances prior to the ability to accommodate. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper describes the ocular morphology of young adults of the southern hemisphere lamprey Geotria australis, the sole representative of the Geotriidae, and makes comparisons with those of holarctic lampreys (Petromyzontidae). As previously reported for the holarctic lamprey Ichthyomyzon unicuspis [Collin and Fritzsch, 1993], the lens of G. australis is non-spherical and possesses a cone-shaped posterior that may be capable of mediating variable focus. The avascular retina of G. australis is well differentiated, containing three retinal ganglion cell populations, three layers of horizontal cells and three photoreceptor types, in contrast to petromyzontids that contain only two photoreceptor types (short and long), G. australis possesses one rod-like (R1) and two cone-like (C1 and C2) photoreceptors. Although the rodlike receptor in G. australis may be homologous with the short receptors of holarctic lampreys, the two cone-like receptors have morphological characteristics that differ markedly from those of the long receptors of their holarctic counterparts. The features which distinguish the two cone-like receptors from those of the long receptor type in holarctic lampreys are the characteristics of the mitochondria and the presence of large amounts of two different types of stored secretory material in the endoplasmic reticulum of the myoid (refractile bodies). The endoplasmic reticulum of each receptor type has a different shape and staining profile and is polymorphic, each showing a continuum of distension. It is proposed that the presence of two cone-like photoreceptors with different characteristics would increase the spectral range of G. australis and thus be of value during the parasitic phase, when this lamprey lives in the surface marine waters. The irideal flap, present in G. australis but not petromyzontids, would assist in reducing intraocular flare during life in surface waters. The results of this study, which are discussed in the context of the proposed evolution of lampreys, emphasise that it is important to take into account the characteristics of the eyes of southern hemisphere lampreys when making generalizations about the eyes of lampreys as a whole.
Resumo:
Background and aim of the study: Results of valve re-replacement (reoperation) in 898 patients undergoing aortic valve replacement with cryopreserved homograft valves between 1975 and 1998 are reported. The study aim was to provide estimates of unconditional probability of valve reoperation and cumulative incidence function (actual risk) of reoperation. Methods: Valves were implanted by subcoronary insertion (n = 500), inclusion cylinder (n = 46), and aortic root replacement (n = 352). Probability of reoperation was estimated by adopting a mixture model framework within which estimates were adjusted for two risk factors: patient age at initial replacement, and implantation technique. Results: For a patient aged 50 years, the probability of reoperation in his/her lifetime was estimated as 44% and 56% for non-root and root replacement techniques, respectively. For a patient aged 70 years, estimated probability of reoperation was 16% and 25%, respectively. Given that a reoperation is required, patients with non-root replacement have a higher hazard rate than those with root replacement (hazards ratio = 1.4), indicating that non-root replacement patients tend to undergo reoperation earlier before death than root replacement patients. Conclusion: Younger patient age and root versus non-root replacement are risk factors for reoperation. Valve durability is much less in younger patients, while root replacement patients appear more likely to live longer and hence are more likely to require reoperation.
Resumo:
This study examines whether dissimilarity among employees that is based on their work status (i.e., whether they are temporary or internal workers) influences their organization-based self-esteem, their trust in and attraction toward their peers, and their altruism. A model that is based on social identity theory posits that work-status dissimilarity negatively influences each outcome variable and that the strength of this relationship varies depending on whether employees have temporary or internal status and the composition of their work groups. Results that are based on a survey of 326 employees (189 internal and 137 temporary) from 34 work groups, belonging to 2 organizations, indicate that work-status dissimilarity has a systematic negative effect only on outcomes related to internal workers when they work in temporary-worker-dominated groups.
Resumo:
The spectral sensitivities of avian retinal photoreceptors are examined with respect to microspectrophotometric measurements of single cells, spectrophotometric measurements of extracted or in vitro regenerated visual pigments, and molecular genetic analyses of visual pigment opsin protein sequences. Bird species from diverse orders are compared in relation to their evolution, their habitats and the multiplicity of visual tasks they must perform. Birds have five different types of visual pigment and seven different types of photo receptor-rods, double (uneven twin) cones and four types of single cone. The spectral locations of the wavelengths of maximum absorbance (lambda (max)) of the different visual pigments, and the spectral transmittance characteristics of the intraocular spectral filters (cone oil droplets) that also determine photoreceptor spectral sensitivity, vary according to both habitat and phylogenetic relatedness. The primary influence on avian retinal design appears to be the range of wavelengths available for vision, regardless of whether that range is determined by the spectral distribution of the natural illumination or the spectral transmittance of the ocular media (cornea, aqueous humour, lens, vitreous humour). Nevertheless, other variations in spectral sensitivity exist that reflect the variability and complexity of avian visual ecology. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A protocol based on seed culture was developed for efficient in vitro propagation of lentil (Lens culinaris Medik). Benzyladenine (BA), thidiazuron (TDZ), and kinetin all induced multiple shoot formation. In terms of the number of long shoots (>2.0 cm) produced per seed, BA and TDZ at optimum concentrations (0.2-0.4 and 0.1 mg/litre, respectively) had similar efficiency, whereas kinetin produced less shoots. Murashige and Skoog (MS) salt composition was better than that of Gamborge (B5) for shoot induction. Increasing calcium (Ca) concentration was necessary to overcome shoot-tip necrosis. For shoot elongation, fresh medium of the same composition of shoot induction medium could be used for stumps from medium with low BA (
Resumo:
We evaluated patients with end-stage heart failure who have a high likelihood of response to cardiac resynchronization therapy (biventricular pacing). It appears that 20% of patients do not respond to this expensive therapy despite the use of selection criteria (dilated cardiomyopathy, heart failure, New York Heart Association class II or IV, left ventricular election fraction 120 ms). The presence of left ventricular dys-synchrony is needed to result in improvement after cardiac resynchronization therapy. (C)2003 by Excerpta Medica, Inc.