25 resultados para Integrable equations in Physics

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend a recent construction for an integrable model describing Josephson tunneling between identical BCS systems to the case where the BCS systems have different single particle energy levels. The exact solution of this generalized model is obtained through the Bethe ansatz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Student attitudes towards a subject affect their learning. For students in physics service courses, relevance is emphasised by vocational applications. A similar strategy is being used for students who aspire to continued study of physics, in an introduction to fundamental skills in experimental physics – the concepts, computational tools and practical skills involved in appropriately obtaining and interpreting measurement data. An educational module is being developed that aims to enhance the student experience by embedding learning of these skills in the practicing physicist’s activity of doing an experiment (gravity estimation using a rolling pendulum). The group concentrates on particular skills prompted by challenges such as: • How can we get an answer to our question? • How good is our answer? • How can it be improved? This explicitly provides students the opportunity to consider and construct their own ideas. It gives them time to discuss, digest and practise without undue stress, thereby assisting them to internalise core skills. Design of the learning activity is approached in an iterative manner, via theoretical and practical considerations, with input from a range of teaching staff, and subject to trials of prototypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Difference equations which discretely approximate boundary value problems for second-order ordinary differential equations are analysed. It is well known that the existence of solutions to the continuous problem does not necessarily imply existence of solutions to the discrete problem and, even if solutions to the discrete problem are guaranteed, they may be unrelated and inapplicable to the continuous problem. Analogues to theorems for the continuous problem regarding a priori bounds and existence of solutions are formulated for the discrete problem. Solutions to the discrete problem are shown to converge to solutions of the continuous problem in an aggregate sense. An example which arises in the study of the finite deflections of an elastic string under a transverse load is investigated. The earlier results are applied to show the existence of a solution; the sufficient estimates on the step size are presented. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of the present work is the well-known feature of the probability density function (PDF) transport equations in turbulent flows-the inverse parabolicity of the equations. While it is quite common in fluid mechanics to interpret equations with direct (forward-time) parabolicity as diffusive (or as a combination of diffusion, convection and reaction), the possibility of a similar interpretation for equations with inverse parabolicity is not clear. According to Einstein's point of view, a diffusion process is associated with the random walk of some physical or imaginary particles, which can be modelled by a Markov diffusion process. In the present paper it is shown that the Markov diffusion process directly associated with the PDF equation represents a reasonable model for dealing with the PDFs of scalars but it significantly underestimates the diffusion rate required to simulate turbulent dispersion when the velocity components are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the number of computer-assisted methods described for the derivation of steady-state equations of enzyme systems, most of them are focused on strict steady-state conditions or are not able to solve complex reaction mechanisms. Moreover, many of them are based on computer programs that are either not readily available or have limitations. We present here a computer program called WinStes, which derives equations for both strict steady-state systems and those with the assumption of rapid equilibrium, for branched or unbranched mechanisms, containing both reversible and irreversible conversion steps. It solves reaction mechanisms involving up to 255 enzyme species, connected by up to 255 conversion steps. The program provides all the advantages of the Windows programs, such as a user-friendly graphical interface, and has a short computation time. WinStes is available free of charge on request from the authors. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First-year undergraduate engineering students' understanding of the units of factors and terms in first-order ordinary differential equations used in modelling contexts was investigated using diagnostic quiz questions. Few students appeared to realize that the units of each term in such equations must be the same, or if they did, nevertheless failed to apply that knowledge when needed. In addition, few students were able to determine the units of a proportionality factor in a simple equation. These results indicate that lecturers of modelling courses cannot take this foundational knowledge for granted and should explicitly include it in instruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Project-based assessment, in the form of take-home exams, was trialed in an honours/masters level electromagnetic theory course. This assessment formed an integral part of the learning experience of the students, and students felt that this was effective method of learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two different types of integrable impurities in a spin ladder system are proposed. The impurities are introduced in such a way that the integrability of the models is not violated. The models are solved exactly with the Bethe ansatz equations as well as the energy eigenvalues obtained. We show for both models that a phase transition between gapped and gapless spin excitations occurs at a critical value of the rung coupling J. In addition, the dependence of the impurities on this phase transition is determined explicitly. In one of the models the spin gap decreases by increasing the impurity strength A. Moreover, for a fixed A, a reduction in the spin gap by increasing the impurity concentration is also observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report experimental studies of metastable chaos in the far-infrared ammonia ring: laser. When the laser pump power is switched from above chaos threshold to slightly below, chaotic intensity pulsations continue for a varying time afterward before decaying to either periodic or cw emission. The behavior is in good qualitative agreement with that predicted by the Lorenz equations, previously used to describe this laser. The statistical distribution of the duration of the chaotic transient is measured and shown to be in excellent agreement with the Lorenz equations in showing a modified exponential distribution. We also give a brief numerical analysis and graphical visualization of the Lorenz equations in phase space illustrating the boundary between the metastable chaotic and the stable fixed point basins of attraction. This provides an intuitive understanding of the metastable dynamics of the Lorenz equations and the experimental system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider solutions to the second-harmonic generation equations in two-and three-dimensional dispersive media in the form of solitons localized in space and time. As is known, collapse does not take place in these models, which is why the solitons may be stable. The general solution is obtained in an approximate analytical form by means of a variational approach, which also allows the stability of the solutions to be predicted. Then, we directly simulate the two-dimensional case, taking the initial configuration as suggested by the variational approximation. We thus demonstrate that spatiotemporal solitons indeed exist and are stable. Furthermore, they are not, in the general case, equivalent to the previously known cylindrical spatial solitons. Direct simulations generate solitons with some internal oscillations. However, these oscillations neither grow nor do they exhibit any significant radiative damping. Numerical solutions of the stationary version of the equations produce the same solitons in their unperturbed form, i.e., without internal oscillations. Strictly stable solitons exist only if the system has anomalous dispersion at both the fundamental harmonic and second harmonic (SH), including the case of zero dispersion at SH. Quasistationary solitons, decaying extremely slowly into radiation, are found in the presence of weak normal dispersion at the second-harmonic frequency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that a system obeying the complex Lorenz equations in the deep chaotic regime can be controlled to periodic behavior by applying a modulation to the pump parameter. For arbitrary modulation frequency and amplitude there is no obvious simplification of the dynamics. However, we find that there are numerous windows where the chaotic system has been controlled to different periodic behaviors. The widths of these windows in parameter space are narrow, and the positions are related to the ratio of the modulation frequency of the pump to the average pulsation frequency of the output variable. These results are in good agreement with observations previously made in a far-infrared laser system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the recent progress on the construction of the determinant representations of the correlation functions for the integrable supersymmetric fermion models. The factorizing F-matrices (or the so-called F-basis) play an important role in the construction. In the F-basis, the creation (and the annihilation) operators and the Bethe states of the integrable models are given in completely symmetric forms. This leads to the determinant representations of the scalar products of the Bethe states for the models. Based on the scalar products, the determinant representations of the correlation functions may be obtained. As an example, in this review, we give the determinant representations of the two-point correlation function for the U-q(gl(2 vertical bar 1)) (i.e. q-deformed) supersymmetric t-J model. The determinant representations are useful for analyzing physical properties of the integrable models in the thermodynamical limit.