58 resultados para Instrumentation and orchestration
em University of Queensland eSpace - Australia
Resumo:
Interfaces designed according to ecological interface design (EID) display higher-order relations and properties of a work domain so that adaptive operator problem solving can be better supported under unanticipated system conditions. Previous empirical studies of EID have assumed that the raw data required to derive and communicate higher-order information would be available and reliable. The present research examines the relative advantages of an EID interface over a conventional piping-and-instrumentation diagram (PID) when instrumentation is maximally or only minimally adequate. Results show an interaction between interface and the adequacy of the instrumentation. Failure diagnosis performance with the EID interface with maximally adequate instrumentation is best overall. Performance with the EID interface drops more drastically from maximally to minimally adequate instrumentation than does performance with the PID interface, to the point where the EID interface with minimally adequate instrumentation supports nonsignificantly worse performance than does the equivalent PID interface. Actual or potential applications of this research include design of instrumentation and displays for complex industrial processes.
Resumo:
Granulation is one of the fundamental operations in particulate processing and has a very ancient history and widespread use. Much fundamental particle science has occurred in the last two decades to help understand the underlying phenomena. Yet, until recently the development of granulation systems was mostly based on popular practice. The use of process systems approaches to the integrated understanding of these operations is providing improved insight into the complex nature of the processes. Improved mathematical representations, new solution techniques and the application of the models to industrial processes are yielding better designs, improved optimisation and tighter control of these systems. The parallel development of advanced instrumentation and the use of inferential approaches provide real-time access to system parameters necessary for improvements in operation. The use of advanced models to help develop real-time plant diagnostic systems provides further evidence of the utility of process system approaches to granulation processes. This paper highlights some of those aspects of granulation. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Laser heating Ar-40/Ar-39 geochronology provides high analytical precision and accuracy, mum-scale spatial resolution. and statistically significant data sets for the study of geological and planetary processes, A newly commissioned Ar-40/Ar-39 laboratory at CPGeo/USP, Sao Paulo, Brazil, equips the Brazilian scientific community with a new powerful tool applicable to the study of geological and cosmochemical processes. Detailed information about laboratory layout, environmental conditions, and instrumentation provides the necessary parameters for the evaluation of the CPGeo/USp Ar-40/Ar-39 suitability to a diverse range of applications. Details about analytical procedures, including mineral separation, irradiation at the IPEN/CNEN reactor at USP, and mass spectrometric analysis enable potential researchers to design the necessary sampling and sample preparation program suitable to the objectives of their study. Finally, the results of calibration tests using Ca and K salts and glasses, international mineral standards, and in-house mineral standards show that the accuracy and precision obtained at the Ar-40/Ar-39 laboratory at CPGeo/USP are comparable to results obtained in the most respected laboratories internationally. The extensive calibration and standardization procedures under-taken ensure that the results of analytical studies carried out in our laboratories will gain immediate international credibility, enabling Brazilian students and scientists to conduct forefront research in earth and planetary sciences.
Resumo:
The equipment used to measure magnetic fields and, electric currents in residences is described. The instrumentation consisted of current transformers, magnetic field probes and locally designed and, built signal conditioning modules. The data acquisition system was capable of unattended recording for extended time periods. The complete system was calibrated to verify its response to known physical inputs. (C) 2003 ISA-The Instrumentation Automation Society.
Resumo:
One of the main objectives of the first International Junior Researcher and Engineer Workshop on Hydraulic Structures is to provide an opportunity for young researchers and engineers to present their research. But a research project is only completed when it has been published and shared with the community. Referees and peer experts play an important role to control the research quality. While some new electronic tools provide further means to disseminate some research information, the quality and impact of the works remain linked with some thorough expert-review process and the publications in international scientific journals and books. Importantly unethical publishing standards are not acceptable and cheating is despicable.
Resumo:
This study describes the pedagogical impact of real-world experimental projects undertaken as part of an advanced undergraduate Fluid Mechanics subject at an Australian university. The projects have been organised to complement traditional lectures and introduce students to the challenges of professional design, physical modelling, data collection and analysis. The physical model studies combine experimental, analytical and numerical work in order to develop students’ abilities to tackle real-world problems. A first study illustrates the differences between ideal and real fluid flow force predictions based upon model tests of buildings in a large size wind tunnel used for research and professional testing. A second study introduces the complexity arising from unsteady non-uniform wave loading on a sheltered pile. The teaching initiative is supported by feedback from undergraduate students. The pedagogy of the course and projects is discussed with reference to experiential, project-based and collaborative learning. The practical work complements traditional lectures and tutorials, and provides opportunities which cannot be learnt in the classroom, real or virtual. Student feedback demonstrates a strong interest for the project phases of the course. This was associated with greater motivation for the course, leading in turn to lower failure rates. In terms of learning outcomes, the primary aim is to enable students to deliver a professional report as the final product, where physical model data are compared to ideal-fluid flow calculations and real-fluid flow analyses. Thus the students are exposed to a professional design approach involving a high level of expertise in fluid mechanics, with sufficient academic guidance to achieve carefully defined learning goals, while retaining sufficient flexibility for students to construct there own learning goals. The overall pedagogy is a blend of problem-based and project-based learning, which reflects academic research and professional practice. The assessment is a mix of peer-assessed oral presentations and written reports that aims to maximise student reflection and development. Student feedback indicated a strong motivation for courses that include a well-designed project component.
Resumo:
A method for the accurate computation of the current densities produced in a wide-runged bi-planar radio-frequency coil is presented. The device has applications in magnetic resonance imaging. There is a set of opposing primary rungs, symmetrically placed on parallel planes and a similar arrangement of rungs on two parallel planes surrounding the primary serves as a shield. Current densities induced in these primary and shielding rungs are calculated to a high degree of accuracy using an integral-equation approach, combined with the inverse finite Hilbert transform. Once these densities are known, accurate electrical and magnetic fields are then computed without difficulty. Some test results are shown. The method is so rapid that it can be incorporated into optimization software. Some preliminary fields produced from optimized coils are presented.
Resumo:
Imaging of the head and neck is the most commonly performed clinical magnetic resonance imaging (MRI) examination [R. G. Evans and J. R. G. Evans, AJR 157, 603 (1991)]. This is usually undertaken in a generalist MRI instrument containing superconducting magnet system capable of imaging all organs. These generalist instruments are large, typically having a bore of 0.9-1.0 m and a length of 1.7-2.5 m and therefore are expensive to site, somewhat claustrophobic to the patient, and offer little access by attending physicians. In this article, we present the design of a compact, superconducting MRI magnet for head and neck imaging that is less than 0.8 m in length and discuss in detail the design of an asymmetric gradient coil set, tailored to the magnet profile. In particular, the introduction of a radio-frequency FM modulation scheme in concert with a gradient sequence allows the epoch of the linear region of the gradient set to be much closer to the end of the gradient structure than was previously possible. Images from a prototype gradient set demonstrate the effectiveness of the designs. (C) 1999 American Institute of Physics. [S0034-6748(99)04910-2].
Resumo:
The acquisition of HI Parkes All Shy Survey (HIPASS) southern sky data commenced at the Australia Telescope National Facility's Parkes 64-m telescope in 1997 February, and was completed in 2000 March. HIPASS is the deepest HI survey yet of the sky south of declination +2 degrees, and is sensitive to emission out to 170 h(75)(-1) Mpc. The characteristic root mean square noise in the survey images is 13.3 mJy. This paper describes the survey observations, which comprise 23 020 eight-degree scans of 9-min duration, and details the techniques used to calibrate and image the data. The processing algorithms are successfully designed to be statistically robust to the presence of interference signals, and are particular to imaging point (or nearly point) sources. Specifically, a major improvement in image quality is obtained by designing a median-gridding algorithm which uses the median estimator in place of the mean estimator.