5 resultados para INSULATOR
em University of Queensland eSpace - Australia
Resumo:
The measured inter-electrode capacitances of silicon-on-sapphire (SOS) MOSFETs are presented and compared with simulation results. It is shown that the variations of capacitances with DC bias differ from those of bulk MOSFETs due to change in body potential variation of the SOS device resulting from electron-hole pair generation through impact ionisation.
Resumo:
Ion implantation can be used to confer electrical conductivity upon conventional insulating polymers such as polyetheretherketone (PEEK). We have implanted PEEK films using three different types of ion implantation: conventional inert gas and metal ion implantation, and ion beam mixing. We have applied a number of analytical techniques to compare the chemical, structural and electrical properties of these films. The most effective means of increasing electrical conductivity appears to be via ion beam mixing of metals into the polymer, followed by metal ion implantation and finally, inert gas ion implantation. Our results suggest that in all cases, the conducting region corresponds to the implanted layer in the near surface to a depth of similar to750 Angstrom (ion beam mixed) to similar to5000 Angstrom (metal ion). This latter value is significantly higher than would be expected from a purely ballistic standpoint, and can only be attributed to thermal inter-diffusion. Our data also indicates that graphitic carbon is formed within the implant region by chain scission and subsequent cross-linking. All ion implanted samples retained their bulk mechanical properties, i.e. they remained flexible. The implant layers showed no signs of de-lamination. We believe this to be the first comparative study between different implantation techniques, and our results support the proposition that soft electronic circuitry and devices can be created by conductivity engineering with ion beams. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We summarize recent theoretical results for the signatures of strongly correlated ultra-cold fermions in optical lattices. In particular, we focus on collective mode calculations, where a sharp decrease in collective mode frequency is predicted at the onset of the Mott metal-insulator transition; and correlation functions at finite temperature, where we employ a new exact technique that applies the stochastic gauge technique with a Gaussian operator basis.
Resumo:
We present a group theoretical analysis of several classes of organic superconductor. We predict that highly frustrated organic superconductors, such as K-(ET)(2)Cu-2(CN)(3) (where ET is BEDT-TTF, bis(ethylenedithio) tetrathiafulvalene) and beta'-[Pd(dmit)(2)](2)X, undergo two superconducting phase transitions, the first from the normal state to a d-wave superconductor and the second to a d + id state. We show that the monoclinic distortion of K-(ET)(2)Cu(NCS)(2) means that the symmetry of its superconducting order parameter is different from that of orthorhombic-K-(ET)(2)Cu[N(CN)(2)] Br. We propose that beta'' and theta phase organic superconductors have d(xy) + s order parameters.
Resumo:
We review the role of strong electronic correlations in quasi-two-dimensional organic charge transfer salts such as (BEDT-TTF)(2)X, (BETS)(2)Y, and beta'-[Pd(dmit)(2)](2)Z. We begin by defining minimal models for these materials. It is necessary to identify two classes of material: the first class is strongly dimerized and is described by a half-filled Hubbard model; the second class is not strongly dimerized and is described by a quarter-filled extended Hubbard model. We argue that these models capture the essential physics of these materials. We explore the phase diagram of the half-filled quasi-two-dimensional organic charge transfer salts, focusing on the metallic and superconducting phases. We review work showing that the metallic phase, which has both Fermi liquid and 'bad metal' regimes, is described both quantitatively and qualitatively by dynamical mean field theory (DMFT). The phenomenology of the superconducting state is still a matter of contention. We critically review the experimental situation, focusing on the key experimental results that may distinguish between rival theories of superconductivity, particularly probes of the pairing symmetry and measurements of the superfluid stiffness. We then discuss some strongly correlated theories of superconductivity, in particular the resonating valence bond (RVB) theory of superconductivity. We conclude by discussing some of the major challenges currently facing the field. These include parameterizing minimal models, the evidence for a pseudogap from nuclear magnetic resonance (NMR) experiments, superconductors with low critical temperatures and extremely small superfluid stiffnesses, the possible spin- liquid states in kappa-(ET)(2)Cu-2(CN)(3) and beta'-[Pd(dmit)(2)](2)Z, and the need for high quality large single crystals.