26 resultados para IFN-gamma

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The failure to mount effective immunity to virus variants in a previously virus-infected host is known as original antigenic sin. We have previously shown that prior immunity to a virus capsid protein inhibits induction by immunization of an IFN-gamma CD8(+) T cell response to an epitope linked to the capsid protein. We now demonstrate that capsid protein-primed CD4(+) T cells secrete IL-10 in response to capsid protein presented by dendritic cells, and deviate CD8+ T cells responding to a linked MHC class I-restricted epitope to reduce IFN-gamma production. Neutralizing IL-10 while delivering further linked epitope, either in vitro or in vivo, restores induction by immunization of an Ag-specific IFN-gamma response to the epitope. This finding demonstrates a strategy for overcoming inhibition of MHC class I epitopes upon immunization of a host already primed to Ag, which may facilitate immunotherapy for chronic viral infection or cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophages are major effector cells of the innate immune system, and appropriate regulation of macrophage function requires the integration of multiple signalling inputs derived from the recognition of host factors (e.g. interferon-gamma/IFN gamma) and pathogen products (e.g. toll-like receptor/TLR agonists). The profound effects of IFN gamma pre-treatment (priming) on TLR-induced macrophage activation have long been recognised, but many of the mechanisms underlying the priming phenotype have only recently been identified. This review summarises the known mechanisms of integration between the IFN gamma and TLR signalling pathways. Synergy occurs at multiple levels, ranging from signal recognition to convergence of signals at the promoters of target genes. In particular, the cross-talk between the IFN gamma and LPS and CpG DNA signalling pathways is discussed. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims: An important consideration in the design of a tumour vaccine is the ability of tumour-specific cytotoxic T lymphocytes (CTL) to recognise unmanipulated tumour cells in vivo. To determine whether B-CLL might use an escape strategy, the current studies compared B-CLL and normal B cell MHC class I expression. Methods: Flow cytometry, TAP allele PCR and MHC class I PCR were used. Results: While baseline expression of MHC class I did not differ, upregulation of MHC class I expression by B-CLL cells in response to IFN-gamma was reduced. No deletions or mutations of TAP 1 or 2 genes were detected. B-CLL cells upregulated TAP protein expression in response to IFN-gamma. Responsiveness of B-CLL MHC class I mRNA to IFN-gamma was not impaired. Conclusions: The data suggest that MHC class I molecules might be less stable at the cell surface in B-CLL than normal B cells, as a result of the described release of beta(2)m and beta(2)m-free class I heavy chains from the membrane. This relative MHC class I expression defect of B-CLL cells may reduce their susceptibility to CTL lysis in response to immunotherapeutic approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although there is good evidence that immunity to the blood stages of malaria parasites can be mediated by different effector components of the adaptive immune system, target antigens for a principal component, effector CD4(+) T cells, have never been defined. We generated CD4+ T cell lines to fractions of native antigens from the blood stages of the rodent parasite, Plasmodium yoelii, and identified fraction-specific T cells that had a Th1 phenotype (producing IL-2, IFN-gamma, and tumor necrosis factor-a, but not IL-4, after antigenic stimulation). These T cells could inhibit parasite growth in recipient severe combined immunodeficient mice. N-terminal sequencing of the fraction showed identity with hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT). Recombinant HGXPRT from the human malaria parasite, Plasmodium falciparum, activated the T cells in vitro, and immunization of normal mice with recombinant HGXPRT reduced parasite growth rates in all mice after challenge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Macrophage activation is a key determinant of susceptibility and pathology in a variety of inflammatory diseases. The extent of macrophage activation is tightly regulated by a number of pro-inflammatory cytokines (e.g. IFN-gamma, IL-2, GM-CSF, IL-3) and anti-inflammatory cytokines (e.g. IL-4, IL-10, TGF-beta). Macrophage colony-stimulating factor (CSF-1/M-CSF) is a key differentiation, growth and survival factor for monocytes/macrophages and osteoclasts. The role of this factor in regulating macrophage activation is often overlooked. This review will summarize our current understanding of the effects of CSF-1 on the activation state of mature macrophages and its role in regulating immune responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to determine nitric oxide (NO) production of a murine macrophage cell line (RAW 264.7 cells) when stimulated with Porphyromonas gingivalis lipopolysaccharides (Pg-LPS). RAW264.7 cells were incubated with i) various concentrations of Pg-LPS or Salmonella typhosa LPS (St-LPS), ii) Pg-LPS with or without L-arginine and/or N-G-monomethyl-L-arginine (NMMA), an arginine analog or iii) Pg-LPS and interferon-gamma (IFN-gamma) with or without anti-IFN-gamma antibodies or interleukin-10 (IL-10). Tissue culture supernatants were assayed for NO levels after 24 h in culture. NO was not observed in tissue culture supernatants of RAW 264.7 cells following stimulation with Pg-LPS, but was observed after stimulation with St-LPS. Exogenous L-arginine restored the ability of Pg-LPS to induce NO production; however, the increase in NO levels of cells stimulated with Pg-LPS with exogenous L-arginine was abolished by NMMA. IFN-gamma induced independent NO production by Pg-LPS-stimulated macrophages and this stimulatory effect of IFN-gamma could be completely suppressed by anti-IFN-gamma antibodies and IL-10. These results suggest that Pg-LPS is able to stimulate NO production in the RAW264.7 macrophage cell model in an L-arginine-dependent mechanism which is itself independent of the action of IFN-gamma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental models of orthotopic liver transplantation (OLT) have shown that the very early events post-OLT are critical in distinguishing immunogenic and tolerogenic reactions. In rodents, increased leukocyte apoptosis and cytokine expression have been demonstrated in tolerogenic strain combinations. Information from human OLT recipients is less abundant. The aim of this study was to determine the amount of early leukocyte activation and apoptosis following human OLT, and to correlate this with subsequent rejection status. Peripheral blood mononuclear cells (PBMC) were isolated from 76 patients undergoing OLT - on the day prior, 5 hrs after reperfusion (day 0), and 18-24 hrs post-OLT (day 1). The mean level of apoptotic PBMCs on post OLT day 1 was higher than healthy recipients (0.9% +/- 0.2 vs. 0.2% +/- 0.1, p = 0.013). Apoptosis was greater in nonrejecting (NR) (1.1% +/- 0.3) compared with acutely-rejecting (R) (0.3% +/- 0.1, p = 0.021) patients. On day 1, PBMC from NR patients had increased expression of IFN-gamma (p = 0.006), IL-10 (p = 0.016), and CD40 ligand (p = 0.02) compared with R. Donor cell chimerism on day 1 did not differ between the groups indicating that this was unlikely to account for increased PBMC apoptosis in the NR group. Interestingly, the level of chimerism on day 0 was significantly higher in NR (3.8% +/- 0.6) compared with R (1.2% +/- 0.4, p = 0.004) patients and there was a close correlation between chimerism on day 0 and cytokine expression on day 1. These results imply that similar mechanisms are occurring in the human liver to promote graft acceptance as in the experimental models of liver transplantation and suggest that strategies that promote liver transplant acceptance in rodents might be applicable to humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human Valpha24(+)Vbeta11(+) natural killer T (NKT) cells are a distinct CD1d-restricted lymphoid subset specifically and potently activated by alpha-galactosylceramide (alpha-GalCer) (KRN7000) presented by CD1 d on antigen-presenting cells. Preclinical models show that activation of Valpha24(+)Vbeta11(+) NKT cells induces effective antitumor immune responses and potentially important secondary immune effects, including activation of conventional T cells and NK cells. We describe the first clinical trial of cancer immune therapy with alpha-GalCer-pulsed CD1d-expressing dendritic cells. The results show that this therapy has substantial, rapid, and highly reproducible specific effects on Valpha24(+)Vbeta11(+) NKT cells and provide the first human in vivo evidence that Valpha24(+)Vbeta11(+) NKT cell stimulation leads to activation of both innate and acquired immunity, resulting in modulation of NK, T-, and B-cell numbers and increased serum interferon-gamma. We present the first clinical evidence that Valpha24(+)Vbeta11(+) NKT cell memory produces faster, more vigorous secondary immune responses by innate and acquired immunity upon restimulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human Valpha24(+)Vbeta11(+) NKT (NKT) cells have immune regulatory activities associated with rejection of tumors, infections and control of autoimmune diseases. They can be stimulated to proliferate using alpha-galactosylceramide (KRN7000) and have the potential for therapeutic manipulation. Subpopulations of NKT cells (CD4(+)CD8(-), CD4(-)D8(+) and CD4(-)CD8(-)) have functionally distinctive Th1/Th2 cytokine profiles and their relative numbers following stimulation may influence the Th1/Th2 balance, which may result in or prevent disease. We aimed to determine the effect of different cytokines in culture during stimulation of NKT cells on the relative proportions of NKT cell subpopulations. Our results show that all NKT cell subpopulations expanded following stimulation with KRN7000 and IL-2, IL-7, IL-1 2 or IL-15. Expansion capacity differed between subpopulations, resulting in different relative proportions of CD4(+) and CD4(-) NKT cell subpopulations, and this was influenced by the cytokine used for stimulation. A Th1-biased environment was observed after stimulation of NKT cells. NKT cells expanded under all conditions evaluated demonstrated significant cytotoxicity against U937 tumor cells. In view of the potential for NKT cell subsets to alter the balance of Th1 and Th2 environment, these data provide insights into the effects of NKT cell manipulation for possible therapeutic applications in different disease settings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood as a source of stem cells has resulted in a high incidence of severe chronic graft-versus-host disease (cGVHD), which compromises the outcome of clinical allogeneic stem cell transplantation. We have studied the effect of G-CSF on both immune complex and fibrotic cGVHD directed to major (DBA/2 --> B6D2F1) or minor (B10.D2 --> BALB/c) histocompatibility antigens. In both models, donor pretreatment with G-CSF reduced cGVHD mortality in association with type 2 differentiation. However, after escalation of the donor T-cell dose, scleroderma occurred in 90% of the recipients of grafts from G-CSF-treated donors. In contrast, only 11% of the recipients of control grafts developed scleroderma, and the severity of hepatic cGVHD was also reduced. Mixing studies confirmed that in the presence of high donor T-cell doses, the severity of scleroderma was determined by the non-T-cell fraction of grafts from G-CSF-treated donors. These data confirm that the induction of cGVHD after donor treatment with G-CSF is dependent on the transfer of large numbers of donor T cells in conjunction with a putatively expanded myeloid lineage, providing a further rationale for the limitation of cell dose in allogeneic stem cell transplantation. (C) 2004 American Society for Blood and Marrow Transplantation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Immunotherapy of tumours using T cells expanded in vitro has met with mixed clinical success suggesting that a greater understanding of tumour/T-cell interaction is required. We used a HPV16E7 oncoprotein-based mouse tumour model to study this further. In this study, we demonstrate that a HPV16E7 tumour passes through at least three stages of immune susceptibility over time. At the earliest time point, infusion of intravenous immune cells fails to control tumour growth although the same cells given subcutaneously at the tumour site are effective. In a second stage, the tumour becomes resistant to subcutaneous infusion of cells but is now susceptible to both adjuvant activated and HPV16E7-specific immune cells transferred intravenously. In the last phase, the tumour is susceptible to intravenous transfer of HPV16E7-specific cells, but not adjuvant-activated immune cells. The requirement for IFN-gamma and perforin also changes with each stage of tumour development. Our data suggest that effective adoptive T-cell therapy of tumour will need to be matched with the stage of tumour development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paradoxically, while peripheral self-tolerance exists for constitutively presented somatic self Ag, self-peptide recognized in the context of MHC class II has been shown to sensitize T cells for subsequent activation. We have shown that MHC class II(+)CD86(+)CD40(-) DC, which can be generated from bone marrow in the presence of an NF-kappaB inhibitor, and which constitutively populate peripheral tissues and lymphoid organs in naive animals, can induce Ag-specific tolerance. In this study, we show that CD40(-) human monocyte-derived dendritic cells (DC), generated in the presence of an NF-kappaB inhibitor, signal phosphorylation of TCRzeta, but little proliferation or IFN-gamma in vitro. Proliferation is arrested in the G(1)/G(0) phase of the cell cycle. Surprisingly, responding T cells are neither anergic nor regulatory, but are sensitized for subsequent IFN-gamma production. The data indicate that signaling through NF-kappaB determines the capacity of DC to stimulate T cell proliferation. Functionally, NF-kappaB(-)CD40(-)class II+ DC may either tolerize or sensitize T cells. Thus, while CD40(-) DC appear to prime or prepare T cells, the data imply that signals derived from other cells drive the generation either of Ag-specific regulatory or effector cells in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A role for infection and inflammation in atherogenesis is widely accepted. Arterial endothelium has been shown to express heat shock protein 60 (HSP60) and, since human (hHSP60) and bacterial (GroEL) HSP60s are highly conserved, the immune response to bacteria may result in cross-reactivity, leading to endothelial damage and thus contribute to the pathogenesis of atherosclerosis. In this study, GroEL-specific T-cell lines from peripheral blood and GroEL-, hHSP60-, and Porphyromonas gingivalis-specific T-cell lines from atherosclerotic plaques were established and characterized in terms of their cross-reactive proliferative responses, cytokine and chemokine profiles, and T-cell receptor (TCR) V beta expression by flow cytometry. The cross-reactivity of several lines was demonstrated. The cytokine profiles of the artery T-cell lines specific for GroEL, hHSP60, and P. gingivalis demonstrated Th2 phenotype predominance in the CD4 subset and Tc0 phenotype predominance in the CD8 subset. A higher proportion of CD4 cells were positive for interferon-inducible protein 10 and RANTES, with low percentages of cells positive for monocyte chemoattractant protein 1 and macrophage inflammatory protein la, whereas a high percentage of CD8 cells expressed all four chemokines. Finally, there was overexpression of the TCR V beta 5.2 family in all lines. These cytokine, chemokine, and V beta profiles are similar to those demonstrated previously for P. gingivalis-specific lines established from periodontal disease patients. These results support the hypothesis that in some patients cross-reactivity of the immune response to bacterial HSPs, including those of periodontal pathogens, with arterial endothelial cells expressing hHSP60 may explain the apparent association between atherosclerosis and periodontal infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interferon (IFN) response is the first line of defense against viral infections, and the majority of viruses have developed different strategies to counteract IFN responses in order to ensure their survival in an infected host. In this study, the abilities to inhibit IFN signaling of two closely related West Nile viruses, the New York 99 strain (NY99) and Kunjin virus (KUN), strain MRM61C, were analyzed using reporter plasmid assays, as well as immunofluorescence and Western blot analyses. We have demonstrated that infections with both NY99 and KUN, as well as transient or stable transfections with their replicon RNAs, inhibited the signaling of both alpha/beta IFN (IFN-alpha/beta) and gamma IFN (IFN-gamma) by blocking the phosphorylation of STAT1 and its translocation to the nucleus. In addition, the phosphorylation of STAT2 and its translocation to the nucleus were also blocked by KUN, NY99, and their replicons in response to treatment with IFN-alpha. IFN-alpha signaling and STAT2 translocation to the nucleus was inhibited when the KUN nonstructural proteins NS2A, NS2B, NS3, NS4A, and NS4B, but not NS1 and NS5, were expressed individually from the pcDNA3 vector. The results clearly demonstrate that both NY99 and KUN inhibit IFN signaling by preventing STAT1 and STAT2 phosphorylation and identify nonstructural proteins. responsible for this inhibition.