14 resultados para High Density Urban Form
em University of Queensland eSpace - Australia
Resumo:
Aims Fibrates or nicotinic acid are usually recommended for secondary prevention of coronary heart disease in patients with low plasma levels of both low-density tipoprotein cholesterol (LDL-C) less than or equal to140 mg/dL (less than or equal to3.6 mmol/L) and high-density lipoprotein cholesterol (HDL-C) less than or equal to40 mg/dL (less than or equal to1.03 mmol/L). The LIPID trial, a randomised, placebo-controlled trial in 9014 patients at 87 centres in Australia and New Zealand, provided an opportunity to investigate the effects of an HMG-CoA reductase inhibitor in patients with tow LDL-C and tow HDL-C. Methods and results Participants in this post hoc substudy were 2073 patients aged 31-75 years with baseline LDL-C less than or equal to140 mg/dL (less than or equal to3.6 mmoL/L), HDL-C less than or equal to40 mg/dL (less than or equal to1.03 mmol/L), and triglyceride less than or equal to300 mg/dL (less than or equal to3.4 mmol/L). The relative risk reduction with pravastatin treatment was 27% for major coronary events (95% Cl 8-42%), 27% for coronary heart disease mortality (95% CI 0-47%), 21% for all-cause mortality (95% Cl 0-38%), and 51% for stroke (95% CI 24-69%). The number needed to treat to prevent a major coronary event over 6 years was 22. Conclusions Treatment with pravastatin in patients with both low LDL-C and low HDL-C significantly reduced major coronary events, stroke, and all-cause mortality. The level of HDL-C is crucial to the risk of recurrent CHD events and, consequently, the benefit of lowering LDL-C. (C) 2004 Published by Elsevier Ltd on behalf of The European Society of Cardiology.
Resumo:
The thermal degradation of high density polyethylene has been modelled by the random breakage of polymer bonds, using a set of population balance equations. A model was proposed in which the population balances were lumped into representative sizes so that the experimentally determined molecular weight distribution of the original polymer could be used as the initial condition. This model was then compared to two different cases of the unlumped population balance which assumed unimolecular initial distributions of 100 and 500 monomer units, respectively. The model that utilised the experimentally determined molecular weight distribution was found to best describe the experimental data. The model fits suggested a second mechanism in addition to random breakage at slow reaction rates. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The high intensity zone within the Jameson Cell is the downcomer. It is largely external and separated from the flotation tank. This, together with operation of the downcomer under vacuum, rather than at elevated pressure and the absence of moving parts, allows ready access to the high intensity zone for measurement and analysis. Experimentation was conducted allowing measurements of recovery for residence times of between 20 milliseconds and ten seconds within the downcomer of a Jameson Cell. The affect of aeration rate on the recovery of different particle sizes was also studied.
Resumo:
Physical attributes of local environments may influence walking. We used a modified version of the Neighbourhood Environment Walkability Scale to compare residents' perceptions of the attributes of two neighbourhoods that differed on measures derived from Geographic Information System databases. Residents of the high-walkable neighbourhood rated relevant attributes of residential density, land-use mix (access and diversity) and street connectivity, consistently higher than did residents of the low-walkable neighbourhood. Traffic safety and safety from crime attributes did not differ. Perceived neighbourhood environment characteristics had moderate to high test retest reliabilities. Neighbourhood environment attribute ratings may be used in population surveys and other studies. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Variations in the growth and survival of six families of juvenile (initial mean weight = 4.16 g) Penaeus japonicus were examined at two densities (48 and 144 individuals m(-2)) in a controlled laboratory experiment. Survival was very high throughout the experiment (95.4%), but differed significantly between densities and rearing tanks. Family, sex and family x density interaction did not significantly affect survival. Mean specific growth rate (SGR) of the shrimp was 18% faster at the low density (1.93 +/- 0.05% day(-1)) than at high density (1.64 +/- 0.03% day(-1)). However, there was a small but significant interaction between family and density indicating that growth of the families was not consistent at both densities. The inconsistent growth of the families across the two densities resulted in a change in the relative performance (ranking) of families at each density. Sex, rearing tank and rearing cage also affected growth of the shrimp. Mean SGR of the females (1.79 +/- 0.03% day(-1)) was 5% faster than males (1.70 +/- 0.03% day(-1)) when averaged across both densities. Shrimp grew significantly faster in rearing tank 3 than rearing tank 1 or 2 at both densities. Results of the present study suggest that family x density interaction could affect the efficiency of selection for growth if shrimp stocks produced from shrimp breeding programs are to be grown across a wide range of densities. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.
Resumo:
We present new simulation results for the packing of single-center and three-center models of carbon dioxide at high pressure in carbon slit pores. The former shows a series of packing transitions that are well described by our density functional theory model developed earlier. In contrast, these transitions are absent for the three-center model. Analysis of the simulation results shows that alternations of flat-lying molecules and rotated molecules can occur as the pore width is increased. The presence or absence of quadrupoles has negligible effect on these high-density structures.
Resumo:
Background and Aims Plants regulate their architecture strongly in response to density, and there is evidence that this involves changes in the duration of leaf extension. This questions the approximation, central in crop models, that development follows a fixed thermal time schedule. The aim of this research is to investigate, using maize as a model, how the kinetics of extension of grass leaves change with density, and to propose directions for inclusion of this regulation in plant models. • Methods Periodic dissection of plants allowed the establishment of the kinetics of lamina and sheath extension for two contrasting sowing densities. The temperature of the growing zone was measured with thermocouples. Two-phase (exponential plus linear) models were fitted to the data, allowing analysis of the timing of the phase changes of extension, and the extension rate of sheaths and blades during both phases. • Key Results The duration of lamina extension dictated the variation in lamina length between treatments. The lower phytomers were longer at high density, with delayed onset of sheath extension allowing more time for the lamina to extend. In the upper phytomers—which were shorter at high density—the laminae had a lower relative extension rate (RER) in the exponential phase and delayed onset of linear extension, and less time available for extension since early sheath extension was not delayed. • Conclusions The relative timing of the onset of fast extension of the lamina with that of sheath development is the main determinant of the response of lamina length to density. Evidence is presented that the contrasting behaviour of lower and upper phytomers is related to differing regulation of sheath ontogeny before and after panicle initiation. A conceptual model is proposed to explain how the observed asynchrony between lamina and sheath development is regulated.
Resumo:
Trees in plantations established for timber production are usually grown at a sufficiently high density that canopy closure occurs within a relatively short time after planting. The trees then shade and outcompete most herbs, shrubs or grasses growing at the site. The closer the spacing (i.e. the greater the density) the faster this will occur. Subsequently, as the trees grow larger, this between-species competition is replaced by within-species competition. If unmanaged, this competition can reduce the commercial productivity of the plantation. Thus, there are two management dilemmas. One is knowing the best initial planting density. The second is knowing how to management the subsequent between-tree competition in order to optimize overall plantation timber productivity. In this chapter we consider initial spacing and thinning for high value timber trees grown in single and mixed species plantations. From growth studies in stands of different ages recommendations are proposed for managing both types of plantations where the primary objective is timber production. It seems that many rainforest species will require more space to achieve optimal growth than most eucalypts and conifers. On the other hand many rainforest species do not have strong apical dominance. Care will be needed to balance these two attributes.