11 resultados para Hcl
em University of Queensland eSpace - Australia
Resumo:
Despite its environmental (and financial) importance, there is no agreement in the literature as to which extractant most accurately estimates the phytoavailability of trace metals in soils. A large dataset was taken from the literature, and the effectiveness of various extractants to predict the phytoavailability of Cd, Zn, Ni, Cu, and Pb examined across a range of soil types and contamination levels. The data suggest that generally, the total soil trace metal content, and trace metal concentrations determined by complexing agents (such as the widely used DTPA and EDTA extractants) or acid extractants (such as 0.1 M HCl and the Mehlich 1 extractant) are only poorly correlated to plant phytoavailability. Whilst there is no consensus, it would appear that neutral salt extractants (such as 0.01 M CaCl2 and 0.1 M NaNO3) provide the most useful indication of metal phytoavailability across a range of metals of interest, although further research is required.
Resumo:
The electrochemical behaviour of magnesium was studied in representative chloride and sulphate solutions including NaCl, Na2SO4, NaOH and their mixed solutions, HCl, and H2SO4: (1) by measuring electrochemical polarisation curves, (2) by using electrochemical impedance spectroscopy (EIS), and (3) by simultaneous measurement of hydrogen gas evolution and measurement of magnesium dissolution rates using inductively coupled plasma atomic emission spectrophotometry (ICPEAS). These experiments showed that a partially protective surface film played an important role in the dissolution of magnesium in chloride and sulphate solutions. Furthermore, the experimental data were consistent with the involvement of the intermediate species Mg+ in magnesium dissolution at film imperfections or on a film-free surface. At such sites, magnesium first oxidised electrochemically to the intermediate species Mg+, and then the intermediate species chemically reacted with water to produce hydrogen and Mg2+. The presence of Cl- ions increased the film free area, and accelerated the electrochemical reaction rate from magnesium metal to Mg+. (C) 1997 Elsevier Science Ltd.
Resumo:
Activated carbon as catalyst support was treated with HCl, HNO3, and HF and the effects of acid treatments on the properties of the activated carbon support were studied by N-2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). Ni catalysts supported on untreated and treated activated carbons were prepared, characterized and tested for the reforming reaction of methane with carbon dioxide. It is found that acid treatment significantly changed the surface chemical properties and pore structure of the activated carbon. The surface area and pore volume of the carbon supports are generally enhanced upon acid treatment due to the removal of impurities present in the carbon. The adsorption capacity of Ni2+ on the carbon supports is also increased, and the increase can be closely correlated with the surface acidity. The impregnation of nickel salts decreases the surface area and pore volume of carbon supports both in micropores and mesopores. Acid treatment results in a more homogeneous distribution of the nickel salt in carbon. When the impregnated carbons are heated in inert atmosphere, there exists a redox reaction between nickel oxide and the carbon. Catalytic activity tests for methane reforming with carbon dioxide show that the activity of nickel catalysts based on the acid-treated carbon supports is closely related with the surface characteristics of catalysts. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Watson is a fully developed suburb of some 30 years in Canberra (the capital city of Australia), A plunge dip using arsenical pesticides for tick control was operated there between 1946 and 1960, Chemical investigations revealed that many soil samples obtained from the study area contained levels of arsenic exceeding the current health-based investigation levels of 100 mg kg(-1) set by the National Health and Medical Research Council in Australia, For the speciation study, nine composite samples of surface and sub-surface soils and a composite sample of rocks were selected. ICP-MS analysis showed that arsenic levels in these samples ranged from 32 to 1597 mg kg(-1), Chemical speciation of arsenic showed that the arsenite (trivalent) components were 0.32-56% in the soil and 44.8% in the rock composite samples. Using a rat model, the absolute bioavailability of these contaminated soils relative to As3+ or As5+ ranged from 1.02 to 9.87% and 0.26 to 2.98%, respectively, An attempt was made to develop a suitable leachate test as an index of bioavailability. However, the results indicated that there was no significant correlation between the bioavailability and leachates using neutral pH water or 1 M HCl. Our results indicate that speciation is highly significant for the interpretation of bioavailability and risk assessment data; the bioavailable fractions of arsenic in soils from Watson are small and therefore the health impact upon the environment and humans due to this element is limited.
Resumo:
High performance composite membranes based on molecular sieving silica (MSS) were synthesized using sols containing silicon co-polymers (methyltriethoxysilane and tetraethylorthosilicate). Alpha alumina supports were treated with hydrochloric acid prior to sol deposition. Permselectivity of CO2 over CH4 as high as 16.68 was achieved whilst permeability of CO2 up to 36.7 GPU (10(-6) cm(3) (STP) cm(-2) . s(-1) . cm Hg-1) was measured. The best membrane's permeability was finger printed during various stages of the synthesis process showing an increase in CO2/CH4 permselectivity by over 25 times from initial support condition (no membrane film) to the completion of pore structure tailoring. Transport measurement results indicate that the membrane pretreated with HCl has highest permselectivity and permeation rate. In particular, there is a definite cut-off pore size between 3.3 and 3.4 angstroms which is just below the kinetic diameters of Ar and CH4. This demonstrates that the mechanism for the separation in the prepared composite membrane is molecular sieving (activated diffusion), rather than Knudsen diffusion.
Resumo:
The effect of acidic treatments on N2O reduction over Ni catalysts supported on activated carbon was systematically studied. The catalysts were characterized by N-2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). It is found that surface chemistry plays an important role in N2O-carbon reaction catalyzed by Ni catalyst. HNO3 treatment produces more active acidic surface groups such as carboxyl and lactone, resulting in a more uniform catalyst dispersion and higher catalytic activity. However, HCl treatment decreases active acidic groups and increases the inactive groups, playing an opposite role in the catalyst dispersion and catalytic activity. A thorough discussion of the mechanism of the N2O catalytic reduction is made based upon results from isothermal reactions, temperature-programmed reactions (TPR) and characterization of catalysts. The effect of acidic treatment on pore structure is also discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The influences of HCl, HNO3 and HF treatments of carbon on N2O and NO reduction with 20 wt% Cu-loaded activated carbon were studied. The order of activity in both N2O and NO is as follows: Cu20/AC-HNO3>Cu20/AC>Cu20/AC-HF>Cu20/AC-HCl. The same sequence was also observed for the amount of CO2 evolved during TPD experiments of supports acid for the catalyst dispersion. On the other hand, N2O exhibited a higher reaction rate than NO and a higher sensitivity to acid treatments, and the presence of gas-phase O-2 had opposite effects in N2O and NO reduction. The key role of carbon surface chemistry is examined to rationalize these findings and the relevant mechanistic and practical implications are discussed. The effects of oxygen surface groups on the pore structure of supports and catalysts are also analyzed, (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The impact of fluorine in copper flotation was relatively unknown until the introduction of skarn ores in the Ok Tedi concentrator. Fluorine in the copper concentrates reports to the gas phase during the smelting stage and forms a corrosive H2SO4-HCl-HF acid brine mixture which must be neutralised. This work was aimed at studying the mineralogy of the fluorosilicate minerals contained in the various oretypes present in the Ok Tedi porphyry copper deposit. The electron microprobe was used to analyse for fluorine and hence identify the fluorosilicate minerals in each oretype. This study revealed talc, phlogopite, biotite, clays, amphiboles, fluoroapatite and titanite to be the sources of fluorine in the orebody. Laboratory and plant investigations were conducted to study the flotation response of these minerals. Chemical assaying of the products of these tests was done to determine the bulk assay of fluorine, Using Rietveld analysis, quantitative estimates of the fluorosilicate minerals in these products were generated. Marrying of the bulk assay with the respective mineralogical assay enabled the understanding of the flotation behavior of fluorine and it's associated mineralogy. Talc and phlogopite were found to be the causes of the fluorine problem at Ok Tedi. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Improvements to peroxide oxidation methods for analysing acid sulfate soils (ASS) are introduced. The soil solution ratio has been increased to 1 : 40, titrations are performed in suspension, and the duration of the peroxide digest stage is substantially shortened. For 9 acid sulfate soils, the peroxide oxidisable sulfur value obtained using the improved method was compared with the reduced inorganic sulfur result obtained using the chromium reducible sulfur method. Their regression was highly significant, the slope of the regression line was not significantly different (P = 0.05) from unity, and the intercept not significantly different from zero. A complete sulfur budget for the improved method showed there was no loss of sulfur as has been reported for earlier peroxide oxidation techniques. When soils were very finely ground, efficient oxidation of sulfides was achieved, despite the milder digestion conditions. Highly sulfidic and organic soils were shown to be the most difficult to analyse using either the improved method or the chromium method. No single analytical method can be universally applied to all ASS, rather a suite of methods is necessary for a thorough understanding of many ASS. The improved peroxide method, in combination with the chromium method and the 4 M HCl extraction, form a sound platform for informed decision making on the management of acid sulfate soils.
Resumo:
The proanthocyanidin (PA) status of 116 accessions from the Leucaena genus representing 21 species, 6 subspecies, 3 varieties and 4 interspecific hybrids was evaluated under uniform environmental and experimental conditions at Redland Bay, Queensland, Australia in October 1997. The PA content of lyophilized youngest fully expanded leaves was measured spectrophotometrically by the butanol/HCl assay referenced to L. leucocephala ssp. glabrata standard PA and expressed as L. leucocephala ssp. glabrata PA equivalents (LLPAE). Considerable interspecific variation in PA concentration existed within the genus, ranging from 0-339 g LLPAE/kg dry matter (DM). Taxa including L. confertiflora, L. cuspidata, L. esculenta and L. greggii contained very high (> 180 g LLPAE/kg DM) PA concentrations. Similarly, many agronomically superior accessions from L. diversifolia, L. pallida and L. trichandra contained extremely high (up to 250 g LLPAE/kg DM) PA concentrations, although these taxa exhibited wide intraspecific variation in PA content offering the potential to select accessions with lower (120-160 g LLPAE/kg DM) PA content. Commercial cultivars of L. leucocephala ssp. glabrata, known to produce forage of superior quality, contained low amounts of PA (33-39 g LLPAE/kg DM). Artificial interspecific hybrids had PA contents intermediate to those of both parents, Lesser-known taxa. including L. collinsii, L. lanceolata, L. lempirana, L. macrophylla, L. magnifica, L. multicapitula, L. salvadorensis and L. trichodes, contained undetectable to low (0-36 g LLPAE/kg DM) quantities of PA and have potential as parents to breed interspecific hybrids of low PA status and superior forage quality. Extractable PA was the dominant PA component, accounting for 91% of total PA within the genus. Regression analysis of accession ranks from different experiments compared to these results indicated that genetic regulation of Leucaena spp. PA content was consistent (P < 0.01) under different edapho-climatic environments. The distribution of PA within the Leucaena genus did not concur with the predictions of various evolutionary and phylogenetic plant defence theories.