5 resultados para HYPOCHLORITE

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Sodium hypochlorite is used commonly as an endodontic irrigant, but there are no published reports that provide details of its use. This survey sought to determine the percentage of Australian dentists who practiced endodontics, whether they used sodium hypochlorite for irrigation, and the manner of dilution, storage and dispensing sodium hypochlorite used by both dentists and endodontists. Methods: All Australian endodontists and a stratified random sample of 200 general dentists in Australia were surveyed to address the issues identified above. Results: Almost 98 per cent of dentists surveyed performed endodontic treatment. Among endodontists, nearly 94 per cent used sodium hypochlorite for irrigation compared with just under 75 per cent of general dentists: Sodium hypochlorite use by general dentists was more common in Victoria and South Australia than in other States. An infant sanitizer (Milton or Johnson's Antibacterial Solution) was used by just over 92 per cent of general practitioners and by more than 67 per cent of endodontists. All other respondents used domestic bleach. One hundred and sixty four of the respondents (80 per cent of endodontists and over 90 per cent of general dentists) used a 1 per cent w/v solution. Ten practitioners used a 4 per cent w/v solution, five used a 2 per cent w/v solution and four used a 1.5 per cent w/v solution. Eighty per cent of the practitioners who diluted their sodium hypochlorite before use, used demineralized water for this purpose. The remainder used tap water. Only four practitioners stored sodium hypochlorite in a manner which risked light exposure and loss of available chlorine content. Conclusions: Sodium hypochlorite is commonly used as an endodontic irrigant and Australian dentists generally stored the material correctly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The solubility of dental pulp tissue in sodium hypochlorite has been extensively investigated but results have been inconsistent; due most likely to variations in experimental design, the volume and/or rate of replenishment of the solutions used and the nature of the tissues assessed. Traditionally, the sodium hypochlorite solutions used for endodontic irrigation in Australia have been either Milton or commercial bleach, with Milton being the most common. Recently, a range of Therapeutic Goods Administration (TGA) approved proprietary sodium hypochlorite solutions, which contain surfactant, has become available. Some domestic chlorine bleaches now also contain surfactants. The purpose of this study was to perform new solubility assessments, comparing Milton with new TGA approved products, Hypochlor 1% and Hypochlor 4% forte, and with a domestic bleach containing surfactant (White King). Methods: Ten randomly assigned pulp samples of porcine dental pulp of approximately equal dimensions were immersed in the above solutions, as well as representative concentrations of sodium hydroxide. Time to complete dissolution was measured and assessed statistically. Results: White King 4% showed the shortest dissolution time, closely followed by Hypochlor 4% forte. White King 1% and Hypochlor 1% each took around three times as long to completely dissolve the samples of pulp as their respective 4% concentrations, while Milton took nearly 10 times as long. The sodium hydroxide solutions showed no noticeable dissolution of the pulp samples. Conclusions: The composition and content of sodium hypochlorite solutions had a profound effect on the ability of these solutions to dissolve pulp tissue in vitro. Greater concentrations provided more rapid dissolution of tissue. One per cent solutions with added surfactant and which contained higher concentrations of sodium hydroxide were significantly more effective in dissolution of pulp tissue than Milton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteria have been implicated in the pathogenesis and progression of pulp and periapical diseases. The primary aim of endodontic treatment is to remove as many bacteria as possible from the root canal system and then to create an environment in which any remaining organisms cannot survive. This can only be achieved through the use of a combination of aseptic treatment techniques, chemomechanical preparation of the root canal, antimicrobial irrigating solutions and intracanal medicaments. The choice of which intracanal medicament to use is dependent on having an accurate diagnosis of the condition being treated, as well as a thorough knowledge of the type of organisms likely to be involved and. their mechanisms of growth and survival. Since the disease is likely to have been caused by the presence of bacteria within the root canal, the use of an antimicrobial agent is essential. Many medicaments have been used in an attempt to achieve the above aims, but no single preparation has been found to be completely predictable or effective. Commonly used medicaments include calcium hydroxide, antibiotics; non-phenolic biocides, phenolic biocides and iodine compounds. Each has advantages and disadvantages, and further research is required to determine which is best suited for root canal infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method of poly-beta-hydroxybutyrate (PHB) extraction from recombinant E. coli is proposed, using homogenization and centrifugation coupled with sodium hypochlorite treatment. The size of PHB granules and cell debris in homogenates was characterised as a function of the number of homogenization passes. Simulation was used to develop the PHB and cell debris fractionation system, enabling numerical examination of the effects of repeated homogenization and centrifuge-feedrate variation. The simulation provided a good prediction of experimental performance. Sodium hypochlorite treatment was necessary to optimise PHB fractionation. A PHB recovery of 80% at a purity of 96.5% was obtained with the final optimised process. Protein and DNA contained in the resultant product were negligible. The developed process holds promise for significantly reducing the recovery cost associated with PHB manufacture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly-3-hydroxybutyrate from recombinant E. coli was recovered using homogenization and continuous centrifugation with a purity of 94%. Final protein and DNA concentrations were 1.0% w/w and 1.9% w/w, respectively, when a hypochlorite treatment was employed prior to centrifugation. High fractional cell debris removal (94%) was achieved with two centrifugation steps.