16 resultados para HPLC-ESI-MS(n)
em University of Queensland eSpace - Australia
Resumo:
The complex nature of venom from spider species offers a unique natural source of potential pharmacological tools and therapeutic leads. The increased interest in spider venom molecules requires reproducible and precise identification methods. The current taxonomy of the Australian Funnel-web spiders is incomplete, and therefore, accurate identification of these spiders is difficult. Here, we present a study of venom from numerous morphologically similar specimens of the Hadronyche infensa species group collected from a variety of geographic locations in southeast Queensland. Analysis of the crude venoms using online reversed-phase high performance liquid chromatography/electrospray ionisation mass spectrometry (rp-HPLC/ESI-MS) revealed that the venom profiles provide a useful means of specimen identification, from the species level to species variants. Tables defining the descriptor molecules for each group of specimens were constructed and provided a quick reference of the relationship between one specimen and another. The study revealed that the morphologically similar specimens from the southeast Queensland region are a number of different species/species variants. Furthermore, the study supports aspects of the current taxonomy with respect to the H. infensa species group. Analysis of Australian Funnel-web spider venom by rp-HPLC/ESI-MS provides a rapid and accurate method of species/species variant identification. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
High-performance liquid chromatography coupled by an electrospray ion source to a tandem mass spectrometer (HPLC-EST-MS/ MS) is the current analytical method of choice for quantitation of analytes in biological matrices. With HPLC-ESI-MS/MS having the characteristics of high selectivity, sensitivity, and throughput, this technology is being increasingly used in the clinical laboratory. An important issue to be addressed in method development, validation, and routine use of HPLC-ESI-MS/MS is matrix effects. Matrix effects are the alteration of ionization efficiency by the presence of coeluting substances. These effects are unseen in the chromatograrn but have deleterious impact on methods accuracy and sensitivity. The two common ways to assess matrix effects are either by the postextraction addition method or the postcolumn infusion method. To remove or minimize matrix effects, modification to the sample extraction methodology and improved chromatographic separation must be performed. These two parameters are linked together and form the basis of developing a successful and robust quantitative HPLC-EST-MS/MS method. Due to the heterogenous nature of the population being studied, the variability of a method must be assessed in samples taken from a variety of subjects. In this paper, the major aspects of matrix effects are discussed with an approach to address matrix effects during method validation proposed. (c) 2004 The Canadian Society of Clinical Chemists. All rights reserved.
Resumo:
Novel 2:2-macrocycles bearing bridged concave 2,6,9-trioxabicyclo[3.3.1]nona-3,7-dienes as chiral spacer units were obtained by cyclocondensation reaction of the chiral bisacid chloride and the corresponding diols, while use of methylene diamines instead of diols afforded 1:1 macrocycles only. Applying the same, but now template-assisted, experimental procedure to the reaction of the bisacid chloride with triethylene glycol brought about a significant increase in yield as well as a suitable simplification of the work-up during preparation and separation of the corresponding 1:1 as well as 2:2 macrocycles, when compared to results reported previously. HPLC separation on chiral columns revealed the presence of diastereoisomers [RR(S,S)- and RS-(meso)-forms] for all 2:2 macrocycles, which was further evidenced by the CD spectrum of one of those species as an example. Preliminary ESI-MS experiments indicated strong complexation abilities of the sulphur-containing ligand towards Ag(I), Cu(II) and Au(III) ions.
Resumo:
An assay using high performance liquid chromatography (HPLC)-electrospray ionization-tandem mass spectrometry (ESI-MS-MS) was developed for simultaneously determining concentrations of morphine, oxycodone, morphine-3-glucuronide, and noroxycodone, in 50 mul samples of rat serum. Deuterated (d(3)) analogues of each compound were used as internal standards. Samples were treated with acetonitrile to precipitate plasma proteins: acetonitrile was removed from the supernatant by centrifugal evaporation before analysis. Limits of quantitation (ng/ml) and their between-day accuracy and precision (%deviation and %CV) were-morphine, 3.8 (4.3% and 7.6%); morphine-3-glucuronide, 5.0 (4.5% and 2.9%); oxycodone, 4.5 (0.4% and 9.3%); noroxycodone, 5.0 (8.5% and 4.6%). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The synthesis of the hexadentate ligand 5,6-dimethyl-2,2,9,9-tetra(methyleneamine)-4,7-dithiadecane (1,2-Me(2)EtN(4)S(2)amp) is reported. The diastereiosomers were separated as cobalt(III) complexes using cation exchange chromatography. The rac and mesa isomers were characterized by NMR (C-13, H-1, Co-59), ESI-MS, UV-Vis spectroscopy and cyclic voltammetry. Single crystals of [Co(rac-1,2-Me(2)EtN(4)S(2)amp)] Cl-2(ClO4) (.) 2H(2)O were characterized by X-ray diffraction. The low-temperature (11 K) absorption spectra of the complexes have been measured in Nafion films and from the observed positions of both spin-allowed (1)A(1g) --> T-1(1g) and (1)A(1g) --> T-1(2g) and spin forbidden (1)A(1g) --> T-3(2g) bands, octahedral ligand-field parameters (10Dq, B and C) were determined. These results, in conjunction with the Co-59 NMR data, are used to further explore the relationship between the Co-59 magnetogyric ratio (gamma(Co)) and the product of the nephelauxetic ratio and the wavelength of the (1)A(1g) --> T-1(1g) transition (beta(DeltaE)(-1)) for complexes of mixed donor nitrogen-thioether ligands. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Complexation of cadmium(II) by the ditopic (bis-tridentate) thiocarbazone ligand 1,5-bis(6-methyl-2-pyridylmethylene) thiocarbonohydrazide, H2L1, results in the self-assembly of a charge-neutral 2 x 2 molecular grid, [Cd-4(L-1)(4)], comprising four metals and four ligands in an interlocked cyclic array. The solid-state structure of this tetramer has been established by X-ray crystallography and in solution by H-1 NMR spectroscopy. The presence of lower molecular weight oligomers was identified by both NMR and ESI-MS.
Resumo:
The multiheme SoxAX proteins are notable for their unusual heme ligation (His/Cys-persulfide in the SoxA subunit) and the complexity of their EPR spectra. The diheme SoxAX protein from Starkeya novella has been expressed using Rhodobacter capsulatus as a host expression system. rSoxAX was correctly formed in the periplasm of the host and contained heme c in similar amounts as the native SoxAX. ESI-MS showed that the full length rSoxA, in spite of never having undergone catalytic turnover, existed in several forms, with the two major forms having masses of 28 687 +/- 4 and 28 718 +/- 4 Da. The latter form exceeds the expected mass of rSoxA by 31 4 Da, a mass close to that of a sulfur atom and indicating that a fraction of the recombinant protein contains a cysteine persulfide modification. EPR spectra of rSoxAX contained all four heme-dependent EPR signals (LS1a, LS1b, LS2, LS3) found in the native SoxAX proteins isolated from bacteria grown under sulfur chemolithotrophic conditions. Exposure of the recombinant SoxAX to different sulfur compounds lead to changes in the SoxA mass profile as determined by ESI while maintaining a fully oxidized SoxAX visible spectrum. Thiosulfate, the proposed SoxAX substrate, did not cause any mass changes while after exposure to dimethylsulfoxide a + 112 +/- 4 Da form of SoxA became dominant in the mass spectrum. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Investigations into the kinetics and mechanism of dithiobenzoate-mediated Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerizations, which exhibit nonideal kinetic behavior, such as induction periods and rate retardation, are comprehensively reviewed. The appreciable uncertainty in the rate coefficients associated with the RAFT equilibrium is discussed and methods for obtaining RAFT-specific rate coefficients are detailed. In addition, mechanistic studies are presented, which target the elucidation of the fundamental cause of rate retarding effects. The experimental and theoretical data existing in the literature are critically evaluated and apparent discrepancies between the results of different studies into the kinetics of RAFT polymerizations are discussed. Finally, recommendations for further work are given. (c) 2006 Wiley Periodicals, Inc.
Resumo:
The role of the therapeutic drug monitoring laboratory in support of immunosuppressant drug therapy is well established, and the introduction of sirolimus (SRL) is a new direction in this field. The lack of an immunoassay for several years has restricted the availability of SRL assay services. The recent availability of a CEDIA (R) SRL assay has the potential to improve this situation. The present communication has compared the CEDIA (R) SRL method with 2 established chromatographic methods, HPLC-UV and HPLC-MS/MS. The CEDIA (R) method, run on a Hitachi 917 analyzer, showed acceptable validation criteria with within-assay precision of 9.1% and 3.3%, and bias of 17.1% and 5.8%, at SRL concentrations of 5.0 mu g/L and 20 mu g/L, respectively. The corresponding between-run precision values were 11.5% and 3.3% and bias of 7.1% and 2.9% at 5.0 mu g/L and 20 mu g/L, respectively, The lower limit of quantification was found to be 3.0 mu g/L. A series of 96 EDTA whole-blood samples predominantly from renal transplant recipients were assayed by the 3 methods for comparison. It was found that the CEDIA (R) method showed a Deming regression line of CEDIA = 1.20 X HPLC-MS/MS - 0.07 (r = 0.934, SEE = 1.47), with a mean bias of 20.4%. Serial blood samples from 8 patients included in this evaluation showed that the CEDIA (R) method reflected the clinical fluctuations in the chromatographic methods, albeit with the variable bias noted. The CEDIA (R) method on the H917 analyzer is therefore a useful adjunct to SRL dosage individualization in renal transplant recipients.
Resumo:
Therapeutic monitoring with dosage individualization of sirolimus drug therapy is standard clinical practice for organ transplant recipients. For several years sirolimus monitoring has been restricted as a result of lack of an immunoassay. The recent reintroduction of the microparticle enzyme immunoassay (MEIA (R)) for sirolimus on the IMx (R) analyser has the potential to address this situation. This Study, using patient samples, has compared the MEIA (R) sirolimus method with an established HPLC-tandem mass spectrometry method (HPLC-MS/MS). An established HPLC-UV assay was used for independent cross-validation. For quality control materials (5, 11, 22 mu g/L), the MEIA (R) showed acceptable validation criteria based on intra-and inter-run precision (CV) and accuracy (bias) of < 8% and < 13%, respectively. The lower limit of quantitation was found to be approximately 3 mu g/L. The performance of the immunoassay was compared with HPLC-MS/MS using EDTA whole-blood samples obtained from various types of organ transplant recipients (n = 116). The resultant Deming regression line was: MEIA = 1.3 x HPLC-MS/MS+ 1.3 (r = 0.967, s(y/x) = 1) with a mean bias of 49.2% +/- 23.1 % (range, -2.4% to 128%; P < 0.001). The reason for the large and variable bias was not explored in this study, but the sirolimus-metabolite cross-reactivity with the MEIA (R) antibody could be a substantive contributing factor. Whereas the MEIA (R) sirolimus method may be an adjunct to sirolimus dosage individualization in transplant recipients, users must consider the implications of the substantial and variable bias when interpreting results. In selected patients where difficult clinical issues arise, reference to a specific chromatographic method may be required.
Resumo:
Objectives: Cyclosporin is an immunosuppressant drug with a narrow therapeutic window. Trough and 2-h post-dose blood samples are currently used for therapeutic drug monitoring in solid organ transplant recipients. The aim of the current study was to develop a rapid HPLC-tandem mass spectrometry (HPLC-MS) method for the measurement of cyclosporin in whole blood that was not only suitable for the clinical setting but also considered a reference method. Methods: Blood samples (50 mu L) were prepared by protein precipitation followed by C-18 solid-phase extraction while using d(12) cyclosporin as the internal standard. Mass spectrometric detection was by selected reaction monitoring with an electrospray interface in positive ionization mode. Results: The assay was linear from 10 to 2000 mu g/L (r(2) > 0.996, n = 9). Inter-day,analytical recovery and imprecision using whole blood quality control samples at 10, 30, 400, 1500, and 2000 mu g/L were 94.9-103.5% and