19 resultados para Grain sorghum

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Seventy sorghum inbred lines which formed part of the Queensland Department of Primary Industries (QDPI) sorghum breeding program were screened with 104 previously mapped RFLP markers. The lines were related by pedigree and consisted of ancestral source lines, intermediate lines and recent releases from the program. We compared the effect of defining marker alleles using either identity by state (IBS) or identity by descent (IBD) on our capacity to trace markers through the pedigree and detect evidence of selection for particular alleles. Allelic identities defined using IBD were much more sensitive for detecting non-Mendelian segregation in this pedigree. Only one marker allele showed significant evidence of selection when IBS was used compared with ten regions with particular allelic identities when IBD was used. Regions under selection were compared with the location of QTLs for agronomic traits known to be under selection in the breeding program. Only two of the ten regions were associated with known QTLs that matched with knowledge of the agronomic characteristics of the ancestral lines. Some of the other regions were hypothesised to be associated with genes for particular traits based on the properties of the ancestral source lines.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years, many sorghum producers in the more marginal (

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper outlines a current investigation of sugar accumulation in sweet sorghum to assist in understanding and simplifying this complex trait in sugarcane. A recombinant inbred line (RIL) sorghum population, between a sweet and a grain sorghum, has been developed and phenotyped for various morphological and agronomic traits related to grain yield, biomass and stem sugar content. A genetic linkage map will be constructed for the sweet sorghum population with the objective of identifying genomic regions associated with sucrose accumulation in sweet sorghum. This will lead to further work, including comparative mapping in sugarcane, to identify the extent to which sweet sorghum can be used as a model for investigating sugar accumulation in sugarcane.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wide and ‘skip row’ row configurations have been used as a means to improve yield reliability in grain sorghum production. However, there has been little effort put to design of these systems in relation to optimal combinations of root system characteristics and row configuration, largely because little is known about root system characteristics. The studies reported here aimed to determine the potential extent of root system exploration in skip row systems. Field experiments were conducted under rain-out shelters and the extent of water extraction and root system growth measured. One experiment was conducted using widely-spaced twin rows grown in the soil. The other experiment involved the use of specially constructed large root observation chambers for single plants. It was found that the potential extent of root system exploration in sorghum was beyond 2m from the planted rows using conventional hybrids and that root exploration continued during grain filling. Preliminary data suggested that the extent of water extraction throughout this region depended on root length density and the balance between demand for, and supply of, water. The results to date suggest that simultaneous genetic and management manipulation of wide row production systems might lead to more effective and reliable production in specific environments. Further study of variation in root-shoot dynamics and root system characteristics is required to exploit possible opportunities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New tools derived from advances in molecular biology have not been widely adopted in plant breeding for complex traits because of the inability to connect information at gene level to the phenotype in a manner that is useful for selection. In this study, we explored whether physiological dissection and integrative modelling of complex traits could link phenotype complexity to underlying genetic systems in a way that enhanced the power of molecular breeding strategies. A crop and breeding system simulation study on sorghum, which involved variation in 4 key adaptive traits-phenology, osmotic adjustment, transpiration efficiency, stay-green-and a broad range of production environments in north-eastern Australia, was used. The full matrix of simulated phenotypes, which consisted of 547 location-season combinations and 4235 genotypic expression states, was analysed for genetic and environmental effects. The analysis was conducted in stages assuming gradually increased understanding of gene-to-phenotype relationships, which would arise from physiological dissection and modelling. It was found that environmental characterisation and physiological knowledge helped to explain and unravel gene and environment context dependencies in the data. Based on the analyses of gene effects, a range of marker-assisted selection breeding strategies was simulated. It was shown that the inclusion of knowledge resulting from trait physiology and modelling generated an enhanced rate of yield advance over cycles of selection. This occurred because the knowledge associated with component trait physiology and extrapolation to the target population of environments by modelling removed confounding effects associated with environment and gene context dependencies for the markers used. Developing and implementing this gene-to-phenotype capability in crop improvement requires enhanced attention to phenotyping, ecophysiological modelling, and validation studies to test the stability of candidate genetic regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We hypothesized that the four rotation crops: wheat (Triticum aestivum L.), sorghum [Sorghum bicolor (L.) Merr.], lablab [Lablab purpureus (L.) Sweet] and mung bean [ Vigna radiata (L.) R. Wilczek] differ in their ability to repair soil structure. The study was conducted on a Typic Haplustert, Queensland, Australia, locally termed a Black Earth and considered a prime cropping soil. Large (0.5-m depth by 0.3-m diam.) soil cores, collected from compacted wheel furrows in an irrigated cotton (Gossypium hirsutum L.) field, were subjected to three, six, or nine wet-dry cycles that simulated local flood irrigation practices. After each cycle, soil profiles were sampled for clod bulk density, image analysis of soil structure, and evapotranspiration. Generally, all crops improved soil structure over the initial field condition but lablab and mung bean gave improvements to greater depths and more rapidly than wheat and sorghum. Mung bean and lablab caused up to a threefold increase in clod porosity in the 0.1- to 0.4-m soil layer after only three wet-dry cycles, whereas sorghum required nine wet-dry cycles to increase clod porosity in only the 0.2- to 0.3-m layer, and wheat gave no improvement even after nine wet-dry cycles. Image analysis of soil structure showed that lablab and mung bean rapidly (by three wet-dry cycles) produced smaller peds with more interconnected pore space than wheat and sorghum. By nine wet-dry cycles, sorghum achieved deep cracking of the soil but the material between the cracks remained large and dense. Evapotranspiration was double under lablab and mung bean compared with wheat and sorghum. Our results indicate greater cycles of wetting and drying under lablab and mung bean than wheat and sorghum that have led to rapid repair of soil compaction.