36 resultados para Glucuronide

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphine-6beta-D-glucuronide (M6G) is an analgesically active metabolite of morphine, accounting for approximate to10% of the morphine dose when administered by systemic routes to humans. Although M6G is more hydrophilic than morphine, it crosses the blood-brain barrier, albeit relatively slowly. For this reason, it is generally thought that, after chronic dosing, M6G contributes significantly to the analgesic effects of systemically administered morphine. Owing to its polar nature, M6G is cleared from the systemic circulation primarily via renal elimination. As M6G accumulates in patients with renal impairment, there is an increased risk of M6G-induced respiratory depression in renal failure patients who are being dosed chronically with systemic morphine. Consistent with its analgesic and respiratory depressant properties, M6G binds to the p-opioid receptor in a naloxone-reversible manner. Although the affinity of M6G for the mu-opioid receptor is similar to or slightly less than that of morphine, preclinical studies in rodents show that M6G is one to two orders of magnitude more potent than morphine when administered by central routes. This major discrepancy between the markedly higher intrinsic antinociceptive potency of M6G relative to morphine, despite their similar p-opioid receptor binding affinities, is difficult to reconcile. It has been proposed that M6G mediates its pain-relieving effects through a novel 'M6G opioid receptor', while others have argued that M6G may have higher efficacy than morphine for transduction of intracellular events. When administered by parenteral routes to rodents, M6G's antinociceptive potency is no more than twofold higher than morphine. In humans, the analgesic efficacy and respiratory depressant potency of M6G relative to morphine have been assessed in a number of short-term studies involving the intrathecal or intravenous routes of administration. For example, in hip replacement patients, intrathecal M6G provided excellent postoperative analgesia but the occurrence of late respiratory depression in 10% of these patients raised serious concern about safety. In postoperative patients, intravenous M6G administered by means of patient-controlled analgesia (PCA), or bolus plus PCA, produced no analgesia in one study and limited analgesia in another. Similarly, there was a lack of significant analgesia in healthy volunteers who received intravenous M6G for the alleviation of experimental pain (carbon dioxide applied to the nasal mucosa). In contrast, satisfactory analgesia was produced by bolus doses of intravenous M6G administered to patients with cancer pain, and to healthy volunteers with experimentally-induced ischaemic, electrical or thermal (ice water) pain. Studies to date in healthy volunteers suggest that intravenous M6G may be a less potent respiratory depressant and have a lower propensity for producing nausea and vomiting than morphine. However, it is unclear whether equi-analgesic doses of M6G and morphine were compared. Clearly, more extensive short-term trials, together with studies involving chronic M6G administration, are necessary before the potential clinical utility of M6G as an analgesic drug in its own right can be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indirect evidence indicates that morphine-3-glucuronide (M3G) may contribute significantly to the neuro-excitatory side effects (myoclonus and allodynia) of large-dose systemic morphine. To gain insight into the mechanism underlying M3G' s excitatory behaviors, We used fluo-3 fluorescence digital imaging techniques to assess the acute effects of M3G (5-500 muM) on the cytosolic calcium concentration ([Ca2+](CYT)) in cultured embryonic hippocampal neurones. Acute (3 min) exposure of neurones to M3G evoked [Ca2+](CYT) transients that were typically either (a) transient oscillatory responses characterized by a rapid increase in [Ca2+](CYT) oscillation amplitude that was sustained for at least similar to30 s or (b) a sustained increase in [Ca2+](CYT) that slowly recovered to baseline. Naloxone-pretreatment decreased the proportion of M3G-responsive neurones by 10%-25%, implicating a predominantly non-opioidergic mechanism. Although the naloxone-insensitive M3G-induced increases in [Ca2+](CYT) were completely blocked by N-methyl-D-aspartic acid (NMDA) antagonists and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (alphaamino-3-hydroxy-5-methyl-4-isoxazolepropiordc acid/ kainate antagonist), CNQX did not block the large increase in [Ca2+](CYT) evoked by NMDA (as expected), confirming that N13G indirectly activates the NMDA receptor. Additionally, tetrodotoxin (Na+ channel blocker), baclofen (gamma-aminobutyric acid, agonist), MVIIC (P/Q-type calcium channel blocker), and nifedipine (L-type calcium channel blocker) all abolished M3G-induced increases in [Ca2+](CYT), suggesting that M3G may produce its neuro-excitatory effects by modulating neurotransmitter release. However, additional characterization is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolic conjugation of exogenous and endogenous carboxylic acid substrates with endogenous glucuronic acid, mediated by the uridine diphosphoglucuronosyl transferase (UGT) superfamily of enzymes, leads to the formation of acyl glucuronide metabolites. Since the late 1970s, acyl glucuronides have been increasingly identified as reactive electrophilic metabolites, capable of undergoing three reactions: intramolecular rearrangement, hydrolysis, and intermolecular reactions with proteins leading to covalent drug-protein adducts. This essential dogma has been accepted for over a decade. The key question proposed by researchers, and now the pharmaceutical industry, is: does or can the covalent modification of endogenous proteins, mediated by reactive acyl glucuronide metabolites, lead to adverse drug reactions, perhaps idiosyncratic in nature? This review evaluates the evidence for acyl glucuronide-derived perturbation of homeostasis, particularly that which might result from the covalent modification of endogenous proteins and other macromolecules. Because of the availability of acyl glucuronides for test tube/in vitro experiments, there is now a substantial literature documenting their rearrangement, hydrolysis and covalent modification of proteins in vitro. It is certain from in vitro experiments that serum albumin, dipeptidyl peptidase IV, tubulin and UGTs are covalently modified by acyl glucuronides. However, these in vitro experiments have been specifically designed to amplify any interference with a biological process in order to find biological effects. The in vivo situation is not at all clear. Certainly it must be concluded that all humans taking carboxylate drugs that form reactive acyl glucuronides will form covalent drug-protein adducts, and it must also be concluded that this in itself is normally benign. However, there is enough in vivo evidence implicating acyl glucuronides, which, when backed up by in vivo circumstantial and documented in vitro evidence, supports the view that reactive acyl glucuronides may initiate toxicity/immune responses. In summary, though acyl glucuronide-derived covalent modification of endogenous macromolecules is well-defined, the work ahead needs to provide detailed links between such modification and its possible biological consequences. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An assay using high performance liquid chromatography (HPLC)-electrospray ionization-tandem mass spectrometry (ESI-MS-MS) was developed for simultaneously determining concentrations of morphine, oxycodone, morphine-3-glucuronide, and noroxycodone, in 50 mul samples of rat serum. Deuterated (d(3)) analogues of each compound were used as internal standards. Samples were treated with acetonitrile to precipitate plasma proteins: acetonitrile was removed from the supernatant by centrifugal evaporation before analysis. Limits of quantitation (ng/ml) and their between-day accuracy and precision (%deviation and %CV) were-morphine, 3.8 (4.3% and 7.6%); morphine-3-glucuronide, 5.0 (4.5% and 2.9%); oxycodone, 4.5 (0.4% and 9.3%); noroxycodone, 5.0 (8.5% and 4.6%). (C) 2004 Elsevier B.V. All rights reserved.