39 resultados para Function of time
em University of Queensland eSpace - Australia
Resumo:
While there is a developing understanding of the influence of sleep on cardiovascular autonomic activity in humans, there remain unresolved issues. In particular, the effect of time within the sleep period, independent of sleep stage, has not been investigated. Further, the influence of sleep on central sympathetic nervous system (SNS) activity is uncertain because results using the major method applicable to humans, the low frequency (LF) component of heart rate Variability (HRV), have been contradictory, and because the method itself is open to criticism. Sleep and cardiac activity were measured in 14 young healthy subjects on three nights. Data was analysed in 2-min epochs. All epochs meeting specified criteria were identified, beginning 2 h before, until 7 h after, sleep onset. Epoch values were allocated to 30-min bins and during sleep were also classified into stage 2, slow wave sleep (SWS) and rapid eye movement (REM) sleep. The measures of cardiac activity were heart irate (HR), blood pressure (BP), high frequency (HF) and LF components of HRV and pre-ejection period (PEP). During non-rapid eye movement (NREM) sleep autonomic balance shifted from sympathetic to parasympathetic dominance, although this appeared to be more because of a shift in parasympathetic nervous system (PNS) activity. Autonomic balance during REM was in general similar to wakefulness. For BP and the HF and LF components the change occurred abruptly at sleep onset and was then constant over time within each stage of sleep, indicating that any change in autonomic balance over the sleep period is a consequence of the changing distribution of sleep stages. Two variables, HR and PEP, did show time effects reflecting a circadian influence over HR and perhaps time asleep affecting PEP. While both the LF component and PEP showed changes consistent with reduced sympathetic tone during sleep, their pattern of change over time differed.
Resumo:
Dormancy release in seeds of Lolium rigidum Gaud. (annual ryegrass) was investigated in relation to temperature and seed water content. Freshly matured seeds were collected from cropping fields at Wongan Hills and Merredin, Western Australia. Seeds from Wongan Hills were equilibrated to water contents between 6 and 18% dry weight and after-ripened at constant temperatures between 9 and 50degreesC for up to 23 weeks. Wongan Hills and Merredin seeds at water contents between 7 and 17% were also after-ripened in full sun or shade conditions. Dormancy was tested at regular intervals during after-ripening by germinating seeds on agar at 12-h alternating 15degreesC (dark) and 25degreesC (light) periods. Rate of dormancy release for Wongan Hills seeds was a positive linear function of after-ripening temperature above a base temperature (T-b) of 5.4degreesC. A thermal after-ripening time model for dormancy loss accounting for seed moisture in the range 6-18% was developed using germination data for Wongan Hills seeds after-ripened at constant temperatures. The model accurately predicted dormancy release for Wongan Hills seeds after-ripened under naturally fluctuating temperatures. Seeds from Merredin responded similarly but had lower dormancy at collection and a faster rate of dormancy release in seeds below 9% water content.
Resumo:
Mass balance calculations were performed to model the effect of solution treatment time on A356 and A357 alloy microstructures. Image analysis and electron probe microanalysis were used to characterise microstructures and confirm model predictions. In as-cast microstructures, up to 8 times more Mg is tied up in the pi-phase than in Mg2Si. The dissolution of pi is accompanied by a corresponding increase in the amount of beta-phase. This causes the rate of pi dissolution to be limited by the rate of beta formation. It is predicted that solution treatments of the order of tens of minutes at 540degreesC produce near-maximum T6 yield strengths, and that Mg contents in excess of 0.52 wt% have no advantage.
Resumo:
We have performed MRI examinations to determine the water diffusion tensor in the brain of six patients who were admitted to the hospital within 12 h after the onset of cerebral ischemic symptoms. The examinations have been carried out immediately after admission, and thereafter at varying intervals up to 90 days post admission. Maps of the trace of the diffusion tensor, the fractional anisotropy and the lattice index, as well as maps of cerebral blood perfusion parameters, were generated to quantitatively assess the character of the water diffusion tensor in the infarcted area. In patients with significant perfusion deficits and substantial lesion volume changes, four of six cases, our measurements show a monotonic and significant decrease in the diffusion anisotropy within the ischemic lesion as a function of time. We propose that retrospective analysis of this quantity, in combination with brain tissue segmentation and cerebral perfusion maps, may be used in future studies to assess the severity of the ischemic event. (C) 1999 Elsevier Science Inc.
Resumo:
Residence time distribution studies of gas through a rotating drum bioreactor for solid-state fermentation were performed using carbon monoxide as a tracer gas. The exit concentration as a function of time differed considerably from profiles expected for plug flow, plug flow with axial dispersion, and continuous stirred tank reactor (CSTR) models. The data were then fitted by least-squares analysis to mathematical models describing a central plug flow region surrounded by either one dead region (a three-parameter model) or two dead regions (a five-parameter model). Model parameters were the dispersion coefficient in the central plug flow region, the volumes of the dead regions, and the exchange rates between the different regions. The superficial velocity of the gas through the reactor has a large effect on parameter values. Increased superficial velocity tends to decrease dead region volumes, interregion transfer rates, and axial dispersion. The significant deviation from CSTR, plug flow, and plug flow with axial dispersion of the residence time distribution of gas within small-scale reactors can lead to underestimation of the calculation of mass and heat transfer coefficients and hence has implications for reactor design and scaleup. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Modeling physiological processes using tracer kinetic methods requires knowledge of the time course of the tracer concentration in blood supplying the organ. For liver studies, however, inaccessibility of the portal vein makes direct measurement of the hepatic dual-input function impossible in humans. We want to develop a method to predict the portal venous time-activity curve from measurements of an arterial time-activity curve. An impulse-response function based on a continuous distribution of washout constants is developed and validated for the gut. Experiments with simultaneous blood sampling in aorta and portal vein were made in 13 anesthetized pigs following inhalation of intravascular [O-15] CO or injections of diffusible 3-O[ C-11] methylglucose (MG). The parameters of the impulse-response function have a physiological interpretation in terms of the distribution of washout constants and are mathematically equivalent to the mean transit time ( T) and standard deviation of transit times. The results include estimates of mean transit times from the aorta to the portal vein in pigs: (T) over bar = 0.35 +/- 0.05 min for CO and 1.7 +/- 0.1 min for MG. The prediction of the portal venous time-activity curve benefits from constraining the regression fits by parameters estimated independently. This is strong evidence for the physiological relevance of the impulse-response function, which includes asymptotically, and thereby justifies kinetically, a useful and simple power law. Similarity between our parameter estimates in pigs and parameter estimates in normal humans suggests that the proposed model can be adapted for use in humans.
Resumo:
Liver fatty acid binding protein (L-FABP) contains amino acids that are known to possess antioxidant function. In this study, we tested the hypothesis that L-FABP may serve as an effective endogenous cytoprotectant against oxidative stress. Chang liver cells were selected as the experimental model because of their undetectable L-FABP mRNA level. Full-length L-FABP cDNA was subcloned into the mammalian expression vector pcDNA3.1 (pcDNA-FABP). Chang cells were stably transfected with pc-DNA-FABP or vector (pcDNA3.1) alone. Oxidative stress was induced by incubating cells with 400 mu mol/L H2O2 or by subjecting cells to hypoxia/reoxygenation. Total cellular reactive oxygen species (ROS) was determined using the fluorescent probe DCF. Cellular damage induced by hypoxia/reoxygenation was assayed by lactate dehydrogenase (LDH) release. Expression of L-FABP was documented by regular reverse transcription polyrnerase chain reaction (RT-PCR), real-time RT-PCR, and Western blot. The pcDNA-FABP-transfected cells expressed full-length L-FABP mRNA, which was absent from vector-transfected control cells. Western blot showed expression of 14-kd L-FABP protein in pcDNA-FABP-transfected cells, but not in vector-transfected cells. Transfected cells showed decreased DCF fluorescence intensity under oxidative stress (H2O2 and hypoxia/reoxygenation) conditions versus control in inverse proportion to the level of L-FABP expression. Lower LDH release was observed in the higher L-FABP-expressed cells in hypoxia/reoxygenation experiments. In conclusion, we successfully transfected and cloned a Chang liver cell line that expressed the L-FABP gene. The L-FABP-expressing cell line had a reduced intracellular ROS level versus control. This finding implies that L-FABP has a significant role in oxidative stress.
Resumo:
Study Design. An operator blinded dual modality trial of measurement of the abdominal muscles during drawing-in of the abdominal wall. Objectives. 1) To investigate, using magnetic resonance imaging (MRI), the function of the transversus abdominis muscle bilaterally during a drawing-in of the abdominal wall. 2) To validate the use of real-time ultrasound imaging as a measure of the deep abdominal muscle during a drawing-in of the abdominal wall. Summary of Background Data. Previous research has implicated the deep abdominal muscle, transversus abdominis, in the support and protection of the spine and provided evidence that training this muscle is important in the rehabilitation of low back pain. One of the most important actions of the transversus abdominis is to draw-in the abdominal wall, and this action has been shown to stiffen the sacroiliac joints. It is hypothesized that in response to a draw in, the transversus abdominis muscle forms a deep musculofascial corset and that MRI could be used to view this corset and verify its mechanism of action on the lumbopelvic region. Methods. Thirteen healthy asymptomatic male elite cricket players aged 21.3 +/- 2.1 years were imaged using MRI and ultrasound imaging as they drew in their abdominal walls. Measurements of the thickness of the transversus abdominis and internal oblique muscles and the slide of the anterior abdominal fascia were measured using both MRI and ultrasound. Measurement of the whole abdominal cross-sectional area (CSA) was conducted using MRI. Results. Results of the MRI demonstrated that, as a result of draw-in, there was a significant increase in thickness of the transversus abdominis (P < 0.001) and the internal oblique muscles (P < 0.001). There was a significant decrease in the CSA of the trunk (P < 0.001). The mean slide ( +/- SD) of the anterior abdominal fascia was 1.54 +/- 0.38 cm for the left side and 1.48 +/- 0.35 cm for the right side. Ultrasound measurements of muscle thickness of both transversus abdominis and the internal oblique, as well as fascial slide, correlated with measures obtained using MRI (interclass correlations from 0.78 to 0.95). Conclusions. The MRI results demonstrated that during a drawing-in action, the transversus abdominis contracts bilaterally to form a musculofascial band that appears to tighten (like a corset) and most likely improves the stabilization of the lumbopelvic region. Real-time ultrasound imaging can also be used to measure changes in the transversus abdominis during the draw-in maneuver.
Resumo:
The estimation of a concentration-dependent diffusion coefficient in a drying process is known as an inverse coefficient problem. The solution is sought wherein the space-average concentration is known as function of time (mass loss monitoring). The problem is stated as the minimization of a functional and gradient-based algorithms are used to solve it. Many numerical and experimental examples that demonstrate the effectiveness of the proposed approach are presented. Thin slab drying was carried out in an isothermal drying chamber built in our laboratory. The diffusion coefficients of fructose obtained with the present method are compared with existing literature results.
Resumo:
MinE is an oligomeric protein that, in conjunction with other Min proteins, is required for the proper placement of the cell division site of Escherichia coli. We have examined the self-association properties of MinE by analytical ultracentrifugation and by studies of hetero-oligomer formation in non-denaturing polyacrylamide gets. The self-association properties of purified MinE predict that cytoplasmic MinE is likely to exist as a mixture of monomers and dimers. Consistent with this prediction, the C-terminal MinE(22-88) fragment forms hetero-oligomers with MinE(+) when the proteins are co-expressed. In contrast, the MinE(36-88) fragment does not form MinE(+)/MinE(36-88) hetero-oligomers, although MinE36-88 affects the topological specificity of septum placement as shown by its ability to induce minicell formation when co-expressed with MinE(+) in wild-type cells. Therefore, hetero-oligomer formation is not necessary for the induction of mini-celling by expression of MinE(36-88) in wild-type cells. The interference with normal septal placement is ascribed to competition between MinE(36-88),nd the corresponding domain in the complete MinE protein for a component required for the topological specificity of septal placement.
Resumo:
Homologues of MHC class I proteins have been identified in the genomes of human, murine and rat cytomegaloviruses (CMVs). Given the pivotal role of the MHC class I protein in cellular immunity, it has been postulated that the viral homologues subvert the normal antiviral immune response of the host, thus promoting virus replication and dissemination in an otherwise hostile environment. This review focuses on recent studies of the CMV MHC class I homologues at the molecular, cellular and whole animal level and presents current hypotheses for their roles in the CMV life cycle.
Resumo:
In this paper I consider two objections raised by Nick Smith (1997) to an argument against the probability of time travel given by Paul Horwich (1995, 1987). Horwich argues that time travel leads to inexplicable and improbable coincidences. I argue that one of Smith's objections fails, but that another is correct. I also consider an instructive way to defend Horwich's argument against the second of Smith's objections, but show that it too fails. I conclude that unless there is something faulty in the conception of explanation implicit in Horwich's argument, time travel presents us with nothing that is inexplicable.
Resumo:
Reviews the book "The Human Organization of Time: Temporal Realities and Experience," by Allen C. Bluedorn.