4 resultados para Factorisation
em University of Queensland eSpace - Australia
Resumo:
A 1-factorisation of a graph is perfect if the union of any two of its 1-factors is a Hamiltonian cycle. Let n = p(2) for an odd prime p. We construct a family of (p-1)/2 non-isomorphic perfect 1-factorisations of K-n,K-n. Equivalently, we construct pan-Hamiltonian Latin squares of order n. A Latin square is pan-Hamiltoilian if the permutation defined by any row relative to any other row is a single Cycle. (C) 2002 Elsevier Science (USA).
Resumo:
The Hamilton-Waterloo problem asks for a 2-factorisation of K-v in which r of the 2-factors consist of cycles of lengths a(1), a(2),..., a(1) and the remaining s 2-factors consist of cycles of lengths b(1), b(2),..., b(u) (where necessarily Sigma(i)(=1)(t) a(i) = Sigma(j)(=1)(u) b(j) = v). In thus paper we consider the Hamilton-Waterloo problem in the case a(i) = m, 1 less than or equal to i less than or equal to t and b(j) = n, 1 less than or equal to j less than or equal to u. We obtain some general constructions, and apply these to obtain results for (m, n) is an element of {(4, 6)1(4, 8), (4, 16), (8, 16), (3, 5), (3, 15), (5, 15)}.
Resumo:
We give a detailed exposition of the theory of decompositions of linearised polynomials, using a well-known connection with skew-polynomial rings with zero derivative. It is known that there is a one-to-one correspondence between decompositions of linearised polynomials and sub-linearised polynomials. This correspondence leads to a formula for the number of indecomposable sub-linearised polynomials of given degree over a finite field. We also show how to extend existing factorisation algorithms over skew-polynomial rings to decompose sub-linearised polynomials without asymptotic cost.