30 resultados para Facial Object Based Method
em University of Queensland eSpace - Australia
Resumo:
This research extends the consumer-based brand equity measurement approach to the measurement of the equity associated with retailers. This paper also addresses some of the limitations associated with current retailer equity measurement such as a lack of clarity regarding its nature and dimensionality. We conceptualise retailer equity as a four-dimensional construct comprising retailer awareness, retailer associations, perceived retailer quality, and retailer loyalty. The paper reports the result of an empirical study of a convenience sample of 601 shopping mall consumers at an Australian state capital city. Following a confirmatory factor analysis using structural equation modelling to examine the dimensionality of the retailer equity construct, the proposed model is tested for two retailer categories: department stores and speciality stores. Results confirm the hypothesised four-dimensional structure.
Resumo:
Phytophthora diseases cause major losses to agricultural and horticultural production in Australia and worldwide. Most Phytophthora diseases are soilborne and difficult to control, making disease prevention an important component of many disease management strategies. Detection and identification of the causal agent, therefore, is an essential part of effective disease management. This paper describes the development and validation of a DNA-based diagnostic assay that can detect and identify 27 different Phytophthora species. We have designed PCR primers that are specific to the genus Phytophthora. The resulting amplicon after PCR is subjected to digestion by restriction enzymes to yield a specific restriction pattern or fingerprint unique to each species. The restriction patterns are compared with a key comprising restriction patterns of type specimens or representative isolates of 27 different Phytophthora species. A number of fundamental issues, such as genetic diversity within and among species which underpin the development and validation of DNA-based diagnostic assays, are addressed in this paper.
Resumo:
In a deregulated electricity market, optimizing dispatch capacity and transmission capacity are among the core concerns of market operators. Many market operators have capitalized on linear programming (LP) based methods to perform market dispatch operation in order to explore the computational efficiency of LP. In this paper, the search capability of genetic algorithms (GAs) is utilized to solve the market dispatch problem. The GA model is able to solve pool based capacity dispatch, while optimizing the interconnector transmission capacity. Case studies and corresponding analyses are performed to demonstrate the efficiency of the GA model.
Resumo:
A deregulated electricity market is characterized with uncertainties, with both long and short terms. As one of the major long term planning issues, the transmission expansion planning (TEP) is aiming at implementing reliable and secure network support to the market participants. The TEP covers two major issues: technical assessment and financial evaluations. Traditionally, the net present value (NPV) method is the most accepted for financial evaluations, it is simple to conduct and easy to understand. Nevertheless, TEP in a deregulated market needs a more dynamic approach to incorporate a project's management flexibility, or the managerial ability to adapt in response to unpredictable market developments. The real options approach (ROA) is introduced here, which has clear advantage on counting the future course of actions that investors may take, with understandable results in monetary terms. In the case study, a Nordic test system has been testified and several scenarios are given for network expansion planning. Both the technical assessment and financial evaluation have been conducted in the case study.
Resumo:
Aim: The aim of this study was to assess the discriminatory power and potential turn around time ( TAT) of a PCR-based method for the detection of methicillin-resistant Staphylococcus aureus (MRSA) from screening swabs. Methods: Screening swabs were examined using the current laboratory protocol of direct culture on mannitol salt agar supplemented with oxacillin (MSAO-direct). The PCR method involved pre-incubation in broth for 4 hours followed by a multiplex PCR with primers directed to mecA and nuc genes of MRSA. The reference standard was determined by pre-incubation in broth for 4 hours followed by culture on MSAO (MSAO-broth). Results: A total of 256 swabs was analysed. The rates of detection of MRSA using MSAO-direct, MSAO-broth and PCR were 10.2, 13.3 and 10.2%, respectively. For PCR, the sensitivity, specificity, positive predictive value and negative predictive values were 66.7% (95% CI 51.9 - 83.3%), 98.6% ( 95% CI 97.1 - 100%), 84.6% ( 95% CI 76.2 - 100%) and 95.2% ( 95% CI 92.4 - 98.0%), respectively, and these results were almost identical to those obtained from MSAO-direct. The agreement between MSAO-direct and PCR was 61.5% ( 95% CI 42.8 - 80.2%) for positive results, 95.6% ( 95% CI 93.0 - 98.2%) for negative results and overall was 92.2% ( 95% CI 88.9 - 95.5%). Conclusions: ( 1) The discriminatory power of PCR and MSAO-direct is similar but the level of agreement, especially for true positive results, is low. ( 2) The potential TAT for the PCR method provides a marked advantage over conventional methods. ( 3) Further modifications to the PCR method such as increased broth incubation time, use of selective broth and adaptation to real-time PCR may lead to improvement in sensitivity and TAT.
Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media
Resumo:
DEM modelling of the motion of coarse fractions of the charge inside SAG mills has now been well established for more than a decade. In these models the effect of slurry has broadly been ignored due to its complexity. Smoothed particle hydrodynamics (SPH) provides a particle based method for modelling complex free surface fluid flows and is well suited to modelling fluid flow in mills. Previous modelling has demonstrated the powerful ability of SPH to capture dynamic fluid flow effects such as lifters crashing into slurry pools, fluid draining from lifters, flow through grates and pulp lifter discharge. However, all these examples were limited by the ability to model only the slurry in the mill without the charge. In this paper, we represent the charge as a dynamic porous media through which the SPH fluid is then able to flow. The porous media properties (specifically the spatial distribution of porosity and velocity) are predicted by time averaging the mill charge predicted using a large scale DEM model. This allows prediction of transient and steady state slurry distributions in the mill and allows its variation with operating parameters, slurry viscosity and slurry volume, to be explored. (C) 2006 Published by Elsevier Ltd.
Resumo:
This study was undertaken to develop a simple laboratory-based method for simulating the freezing profiles of beef trim so that their effect on E. coli 0157 survival could be better assessed. A commercially available apparatus of the type used for freezing embryos, together with an associated temperature logger and software, was used for this purpose with a -80 degrees C freezer as a heat sink. Four typical beef trim freezing profiles, of different starting temperatures or lengths, were selected and modelled as straight lines for ease of manipulation. A further theoretical profile with an extended freezing plateau was also developed. The laboratory-based setup worked well and the modelled freezing profiles fitted closely to the original data. No change in numbers of any of the strains was apparent for the three simulated profiles of different lengths starting at 25 degrees C. Slight but significant (P < 0.05) decreases in numbers (similar to 0.2 log cfu g(-1)) of all strains were apparent for a profile starting at 12 degrees C. A theoretical version of this profile with a freezing plateau phase extended from 11 h to 17 h resulted in significant (P < 0.05) decreases in numbers (similar to 1.2 log cfu g(-1)) of all strains. Results indicated possible avenues for future research in controlling this pathogen. The method developed in this study proved a useful and cost-effective way for simulating freezing profiles of beef trim. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A sensitive quantitative reversed-phase HPLC method is described for measuring bacterial proteolysis and proteinase activity in UHT milk. The analysis is performed on a TCA filtrate of the milk. The optimum concentration of TCA was found to be 4%; at lower concentrations, non-precipitated protein blocked the HPLC while higher concentrations yielded lower amounts of peptides. The method showed greater sensitivity and reproducibility than a fluorescamine-based method. Quantification of the HPLC method was achieved by use of an external dipeptide standard or a standard proteinase. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We have developed an alignment-free method that calculates phylogenetic distances using a maximum-likelihood approach for a model of sequence change on patterns that are discovered in unaligned sequences. To evaluate the phylogenetic accuracy of our method, and to conduct a comprehensive comparison of existing alignment-free methods (freely available as Python package decaf+py at http://www.bioinformatics.org.au), we have created a data set of reference trees covering a wide range of phylogenetic distances. Amino acid sequences were evolved along the trees and input to the tested methods; from their calculated distances we infered trees whose topologies we compared to the reference trees. We find our pattern-based method statistically superior to all other tested alignment-free methods. We also demonstrate the general advantage of alignment-free methods over an approach based on automated alignments when sequences violate the assumption of collinearity. Similarly, we compare methods on empirical data from an existing alignment benchmark set that we used to derive reference distances and trees. Our pattern-based approach yields distances that show a linear relationship to reference distances over a substantially longer range than other alignment-free methods. The pattern-based approach outperforms alignment-free methods and its phylogenetic accuracy is statistically indistinguishable from alignment-based distances.
Resumo:
In simultaneous analyses of multiple data partitions, the trees relevant when measuring support for a clade are the optimal tree, and the best tree lacking the clade (i.e., the most reasonable alternative). The parsimony-based method of partitioned branch support (PBS) forces each data set to arbitrate between the two relevant trees. This value is the amount each data set contributes to clade support in the combined analysis, and can be very different to support apparent in separate analyses. The approach used in PBS can also be employed in likelihood: a simultaneous analysis of all data retrieves the maximum likelihood tree, and the best tree without the clade of interest is also found. Each data set is fitted to the two trees and the log-likelihood difference calculated, giving partitioned likelihood support (PLS) for each data set. These calculations can be performed regardless of the complexity of the ML model adopted. The significance of PLS can be evaluated using a variety of resampling methods, such as the Kishino-Hasegawa test, the Shimodiara-Hasegawa test, or likelihood weights, although the appropriateness and assumptions of these tests remains debated.