8 resultados para FERRITIC STEELS
em University of Queensland eSpace - Australia
Resumo:
A transpassivation model was proposed for Fe–Cr–Ni stainless steels. In this model, the important steps and processes involved in transpassivation were illustrated. With some reasonable assumptions, transpassivation behaviours were predicted, such as the changes in film composition, film thickness, anodic current density and AC impedance spectrum in transpassive and secondary passive regions. It was demonstrated that these theoretical predictions were in good agreement with experimentally observed transpassivity of Fe–Cr–Ni stainless steels.
Resumo:
In order to understand the metallurgical influences on Rock Bolt SCC, an evaluation has been carried out on carbon, carbon + manganese, alloy and microalloyed steels subjected to the conditions previously identified as producing laboratory SCC similar to that observed for rock bolts in service. The approach has been to use the LIST test (Linearly increasing stress test) for samples exposed to a dilute pH 2.1-sulphate solution, as per our prior studies. SCC was evaluated from the decrease in tensile strength, ductility and fractography as revealed by SEM observation. A range of SCC susceptibilities was observed. Ten of these steels showed SCC, however there was no SCC for one carbon, two carbon + manganese and two alloy steels.
Resumo:
The purpose of this paper is to provide a succinct but nevertheless complete mechanistic overview of the various types of magnesium corrosion. The understanding of the corrosion processes of magnesium alloys builds upon our understanding of the corrosion of pure magnesium. This provides an understanding of the types of corrosion exhibited by,magnesium alloys, and also of the environmental factors Of most importance. This deep understanding is required as a foundation if we are to produce magnesium alloys much more resistant to corrosion than the present alloys. Much has already been achieved, but there is vast scope for improvement. This present analysis can provide a foundation and a theoretical framework for further, much needed research. There is still vast scope both for better fundamental understanding of corrosion processes, engineering usage of magnesium, and also on the corrosion protection of magnesium alloys in service.
Resumo:
Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.
Resumo:
This review aims to provide a foundation for the safe and effective use of magnesium (Mg) alloys, including practical guidelines for the service use of Mg alloys in the atmosphere and/or in contact with aqueous solutions. This is to provide support for the rapidly increasing use of Mg in industrial applications, particularly in the automobile industry. These guidelines should be firmly based on a critical analysis of our knowledge of SCC based on (1) service experience, (2) laboratory testing and (3) understanding of the mechanism of SCC, as well as based on an understanding of the Mg corrosion mechanism.
Resumo:
This work reports on a critical measurement to understand the intergranular stress corrosion cracking (IGSCC) of pipeline steels: the atom probe field ion microscope (APFIM) measurement of the carbon concentration at a grain boundary (GB). The APFIM measurement was related to the microstructure and to IGSCC observations. The APFIM indicated that the GB carbon concentration of X70 was similar to 10 at% or less, which correlated with a high resistance to IGSCC for X70. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Many potential applications for sintered aluminium are limited by the poor fatigue properties of the material. In order to increase understanding of the fatigue mechanisms in sintered aluminium, fatigue tests were carried out on a sintered 2xxx series aluminium alloy, AMB-2712. The alloy has a fatigue endurance strength of approximately 145 MPa (R = 0.1). Three regions were identified on the fatigue fracture surfaces. Region I contains the initiation site and transgranular crack propagation. When the size of the cyclic plastic zone ahead of the crack becomes comparable to the grain size, microstructural damage at the crack tip results in a transition to intergranular propagation. Region 2 mainly contains intergranularly fractured material, whilst the final fracture area makes up Region 3, in the form of dimple coalescence and intergranular failure. Transgranular fractographic features observed on fatigued specimens include fissure-type striations, cross-hatched grains, furrowed grains and grains containing step-like features. (c) 2006 Elsevier B.V. All rights reserved.